Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Display Documents



  history
ID: 329718.0, MPI für Gravitationsphysik / Geometric Analysis and Gravitation
On spin-(3/2) systems in Ricci flat space-times
Authors:Frauendiener, Jörg
Language:English
Date of Publication (YYYY-MM-DD):1995-06
Title of Journal:Journal of Mathematical Physics
Journal Abbrev.:J. Math. Phys.
Volume:36
Issue / Number:6
Start Page:3012
End Page:3022
Review Status:not specified
Abstract / Description:The Dirac formulation of massless spin-(3/2) fields is discussed. The existence and uniqueness for the solutions of the spin-(3/2) field equations in Dirac form is proven. It is shown that the system of equations can be split into a symmetric hyperbolic system of evolution equations and a set of constraint equations. The constraints are shown to propagate on a curved manifold if and only if it is an Einstein space. The gauge freedom present in the spin-(3/2) system is discussed and it is shown that the complete system ``solutions modulo gauge'' has a well posed Cauchy problem if and only if the Einstein equations hold.
External Publication Status:published
Document Type:Article
Communicated by:Gerhard Huisken
Affiliations:MPI für Gravitationsphysik/Geometric Analysis and Gravitation
Identifiers:ISSN:0022-2488
Full Text:
You have privileges to view the following file(s):
329718.pdf  [912,00 Kb] [Comment:arXiv]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.