Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Display Documents



  history
ID: 346888.0, MPI für Gravitationsphysik / Quantum Gravity and Unified Theories
Locally supersymmetric D = 3 non-linear sigma models
Authors:De Wit, Bernard; Tollsten, A. K.; Nicolai, Hermann
Date of Publication (YYYY-MM-DD):1993-03-01
Title of Journal:Nuclear Physics B
Journal Abbrev.:Nucl. Phys. B
Volume:392
Issue / Number:1
Start Page:3
End Page:38
Review Status:not specified
Audience:Not Specified
Abstract / Description:We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N = 1 and 2 the target space of these models is riemannian or Kähler, respectively. All N > 2 theories are associated with Einstein spaces. For N = 3 the target space is quaternionic, while for N = 4 it generally decomposes into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N = 5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N = 9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F4(−20), E6(−14), E7(−5) and E8(+8), respectively. For N = 3 and N greater-or-equal, slanted 5 the D = 2 theories obtained by dimensional reduction are two-loop finite.
External Publication Status:published
Document Type:Article
Communicated by:Hermann Nicolai
Affiliations:MPI für Gravitationsphysik/Quantum Gravity and Unified Theories
External Affiliations:Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149, 2000, Hamburg 50, Germany
Identifiers:ISSN:0550-3213
DOI:10.1016/0550-3213(93)90195-U
Full Text:
You have privileges to view the following file(s):
346888.pdf  [1,00 Mb] [Comment:Online Journal]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.