Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Display Documents



  history
ID: 359635.0, MPI für Gravitationsphysik / Geometric Analysis and Gravitation
Non-proper helicoid-like limits of closed minimal surfaces in 3-manifolds
Authors:Calle, Maria; Lee, Darren
Date of Publication (YYYY-MM-DD):2009-04
Title of Journal:Mathematische Zeitschrift
Volume:261
Issue / Number:4
Start Page:725
End Page:736
Review Status:not specified
Audience:Not Specified
Abstract / Description:We show that there exists a metric with positive scalar curvature on S2xS1 and a sequence of embedded minimal cylinders that converges to a minimal lamination that, in a neighborhood of a strictly stable 2-sphere, is smooth except at two helicoid-like singularities on the 2-sphere. The construction is inspired by a recent example by D. Hoffman and B. White.
External Publication Status:published
Document Type:Article
Communicated by:Gerhard Huisken
Affiliations:MPI für Gravitationsphysik/Geometric Analysis and Gravitation
Identifiers:LOCALID:arXiv:0803.0629
URL:http://arxiv.org/abs/0803.0629
ISSN:1432-1823
DOI:10.1007/s00209-008-0346-1
Full Text:
You have privileges to view the following file(s):
0803.0629v2.pdf  [336,00 Kb] [Comment:arXiv:0803.0629v2 [math.DG]]  
 
MZ261-725.pdf  [352,00 Kb] [Comment:Online Journal]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.