Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Display Documents

ID: 398299.0, MPI für Gravitationsphysik / Astrophysical Relativity
Faranoff-Riley type I jet deceleration at density discontinuities - Relativistic hydrodynamics with a realistic equation of state
Authors:Meliani, Z.; Keppens, R.; Giacomazzo, Bruno
Date of Publication (YYYY-MM-DD):2008-11
Title of Journal:Astronomy and Astrophysics
Issue / Number:2
Start Page:321
End Page:337
Review Status:not specified
Audience:Not Specified
Abstract / Description:We propose a model that could explain the sudden jet deceleration in active galactic nuclei, thereby invoking density discontinuities. Motivated particularly by recent indications from HYbrid MOrphology Radio Sources (HYMORS) that Fanaroff-Riley classification is induced in some cases by variations in the density of the external medium. We explore how one-sided jet deceleration and a transition to FR I type can occur in HYMORS, which start as FR II (and remain so on the other side).
Methods. We implemented the Synge-type equation of state introduced in the general polytropic case by Meliani et al. (2004, A&A, 425, 773) into the relativistic hydrodynamic grid-adaptive AMRVAC code. To demonstrate its accuracy, we set up various test problems in an appendix, which we compare to exact solutions that we calculate as well. We use the code to analyse the deceleration of jets in FR II/FR I radio galaxies, following them at high resolution across several hundred jet beam radii.
Results. We present results for 10 model computations that vary the inlet Lorentz factor from 10 to 20, include uniform or decreasing density profiles, and allow for cylindrical versus conical jet models. As long as the jet propagates through uniform media, we find that the density contrast sets most of the propagation characteristics, fully consistent with previous modelling efforts. When the jet runs into a denser medium, we find a clear distinction in the decelaration of high-energy jets depending on the encountered density jump. For fairly high-density contrast, the jet becomes destabilised and compressed, decelerates strongly (up to subrelativistic speeds), and can form knots. If the density contrast is too weak, the high-energy jets continue with FR II characteristics. The trend is similar for the low-energy jet models, which start as underdense jets from the outset, and decelerate by entrainment into the lower region as well. We point out differences that are found between cylindrical and conical jet models, together with dynamical details like the Richtmyer-Meshkov instabilities developing at the original contact interface.
External Publication Status:published
Document Type:Article
Communicated by:Bernhard F. Schutz
Affiliations:MPI für Gravitationsphysik/Astrophysical Relativity
Full Text:
You have privileges to view the following file(s):
AundA491-321.pdf  [2,00 Mb] [Comment:Online Journal]  
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.