Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Display Documents



  history
ID: 402936.0, MPI für Gravitationsphysik / Quantum Gravity and Unified Theories
Twist-three at five loops, Bethe Ansatz and wrapping
Authors:Beccaria, Matteo; Forini, Valentina; Lukowski, T.; Zieme, Stefan
Language:English
Date of Publication (YYYY-MM-DD):2009
Title of Journal:Journal of High Energy Physics
Volume:03
Sequence Number of Article:129
Review Status:not specified
Audience:Not Specified
Abstract / Description:We present a formula for the five-loop anomalous dimension of N=4 SYM twist-three operators in the sl(2) sector. We obtain its asymptotic part from the Bethe Ansatz and finite volume corrections from the generalized Luescher formalism, considering scattering processes of spin chain magnons with virtual particles that travel along the cylinder. The complete result respects the expected large spin scaling properties and passes non-trivial tests including reciprocity constraints. We analyze the pole structure and find agreement with a conjectured resummation formula. In analogy with the twist-two anomalous dimension at four-loops, wrapping effects are of order log^2 M/M^2 for large values of the spin.
External Publication Status:published
Document Type:Article
Communicated by:Hermann Nicolai
Affiliations:MPI für Gravitationsphysik/Quantum Gravity and Unified Theories
Identifiers:LOCALID:arXiv:0901.4864
URL:http://lanl.arxiv.org/abs/0901.4864
DOI:10.1088/1126-6708/2009/03/129
URL:http://www.iop.org/EJ/abstract/1126-6708/2009/03/1...
Full Text:
You have privileges to view the following file(s):
0901.4864v2.pdf  [262,00 Kb] [Comment:arXiv:0901.4864v2 [hep-th]]  
 
jhep032009129.pdf  [331,00 Kb] [Comment:Online Journal]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.