Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Pflanzenphysiologie     Collection: Publikationen Pflanzenphysiologie     Display Documents



ID: 127394.0, MPI für molekulare Pflanzenphysiologie / Publikationen Pflanzenphysiologie
Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis
Authors:Kelly, A. A.; Froehlich, J. E.; Dormann, P.
Date of Publication (YYYY-MM-DD):2003
Title of Journal:Plant Cell
Volume:15
Issue / Number:11
Start Page:2694
End Page:2706
Review Status:not specified
Audience:Not Specified
Abstract / Description:Two genes (DGD1 and DGD2) are involved in the synthesis of the chloroplast lipid digalactosyldiacylglycerol (DGDG). The role of DGD2 for galactolipid synthesis was studied by isolating Arabidopsis T-DNA insertional mutant alleles (dgd2-1 and dgd2-2) and generating the double mutant line dgd1 dgd2. Whereas the growth and lipid composition of dgd2 were not affected, only trace amounts of DGDG were found in dgd1 dgd2. The growth and photosynthesis of dgd1 dgd2 were affected more severely compared with those of dgd1,indicating that the residual amount of DGDG in dgd1 is crucial for normal plant development. DGDG synthesis was increased after phosphate deprivation in the wild type, dgd1, and dgd2 but not in dgd1 dgd2. Therefore, DGD1 and DGD2 are involved in DGDG synthesis during phosphate deprivation. DGD2 was localized to the outer side of chloroplast envelope membranes. Like DGD2, heterologously expressed DGD1 uses UDP-galactose for galactosylation. Galactolipid synthesis activity for monogalactosyldiacylglycerol (MGDG), DGDG, and the unusual oligogalactolipids tri- and tetragalactosyldiacylglycerol was detected in isolated chloroplasts of all mutant lines, including dgd1 dgd2. Because dgd1 and dgd2 carry null mutations, an additional, processive galactolipid synthesis activity independent from DGD1 and DGD2 exists in Arabidopsis. This third activity, which is related to the Arabidopsis galactolipid:galactolipid galactosyltransferase, is localized to chloroplast envelope membranes and is capable of synthesizing DGDG from MGDG in the absence of UDP-galactose in vitro, but it does not contribute to net galactolipid synthesis in planta. [References: 45] 45
Free Keywords:Outer envelope membrane. Photosynthetic apparatus. Chlorophyll
; fluorescence. Chloroplast envelopes. Biosynthesis. Mutant. Deficient.
; Thaliana. Plants. Protein.
; Plant Sciences in Current Contents(R)/Agricultural, Biology &
; Environmental Sciences
; Animal & Plant Sciences in Current Contents(R)/Life Sciences.
; 2003 week 50
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für molekulare Pflanzenphysiologie/Molekulare Physiologie/AG Doermann
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.