Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: Publikationen mpi-cbg 2003     Display Documents

ID: 15564.0, MPI für molekulare Zellbiologie und Genetik / Publikationen mpi-cbg 2003
Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos
Authors:Maddox, P.; Desai, A.; Oegema, K.; Mitchison, T. J.; Salmon, E. D.
Date of Publication (YYYY-MM-DD):2002-10-01
Title of Journal:Current Biology
Journal Abbrev.:Curr. Biol.
Issue / Number:19
Start Page:1670
End Page:1674
Review Status:Peer-review
Audience:Not Specified
Abstract / Description:During cell division, eukaryotic cells assemble dynamic microtubule-based spindles to segregate replicated chromosomes [1, 2]. Rapid spindle microtubule turnover, likely derived from dynamic instability, has been documented in yeasts [3,4], plants [5] and vertebrates [6]. Less studied is concerted spindle microtubule poleward translocation (flux) coupled to depolymerization at spindle poles [7]. Microtubule flux has been observed only in vertebrates [7], although there is indirect evidence for it in insect spermatocytes [8, 9] and higher plants [10]. Here we use fluorescent speckle microscopy (FSM) to demonstrate that mitotic spindles of syncytial Drosophila embryos exhibit poleward microtubule flux, indicating that flux is a widely conserved property of spindles. By simultaneously imaging chromosomes (or kinetochores) and flux, we provide evidence that flux is the dominant mechanism driving chromosome-to-pole movement (anaphase A) in these spindles. At 18 C and 24 C, separated sister chromatids moved poleward at average rates (3.6 and 6.6 mum/min, respectively) slightly greater than the mean rates of poleward flux (3.2 and 5.2 mum/min, respectively). However, at 24 C the rate of kinetochoreto-pole movement varied from slower than to twice the mean rate of flux, suggesting that although flux is the dominant mechanism, kinetochore-associated microtubule depolymerization contributes to anaphase A.
Comment of the Author/Creator:Date: 2002, OCT 1
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für molekulare Zellbiologie und Genetik
External Affiliations:Marine Biol Lab, Cell Div Grp, Woods Hole, MA 02543, USA; Univ N Carolina, Dept Biol, Chapel Hill, NC 27599, USA; Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115, USA
Identifiers:ISI:000178404100019 [ID No:1]
ISSN:0960-9822 [ID No:2]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.