Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Chemie     Collection: Publikationen MPI für Chemie     Display Documents

ID: 195431.0, MPI für Chemie / Publikationen MPI für Chemie
The Mt Cimone, Italy, free tropospheric campaign: principal characteristics of the gaseous and aerosol composition from European pollution, Mediterranean influences and during African dust events
Authors:Balkanski, Y.; Bauer, S. E.; van Dingenen, R.; Bonasoni, P.; Schulz, M.; Fischer, H.; Gobbi, G. P.; Hanke, Markus; Hauglustaine, D.; Putaud, J. P.; Stohl, A.; Raes, F.
Date of Publication (YYYY-MM-DD):2003-03-27
Title of Journal:Atmospheric Chemistry and Physics Discussions
Journal Abbrev.:Atmos. Chem. Phys. Discuss.
Start Page:1753
End Page:1776
Copyright:© European Geosciences Union 2003
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:A 5 weeks experiment (1 June to 5 July 2000) took place at a mountain site, Mt Cimone (44º11' N, 10º42' E, 2165 m a.s.l.), that is representative of Southern Europe background conditions. During this field campaign, a comprehensive characterisation of trace gases and radicals, involved in the production and destruction of O3, as well as of chemical, physical and optical properties of the aerosol was done. Atmospheric gases and aerosols were measured continuously over the 5 weeks period, in order to characterize their background concentrations in the free troposphere and their respective differences in air containing dust aerosols advected from Africa. Due to its location and elevation, Mt Cimone gets free tropospheric air both from the Mediterranean and from the Po Valley, which makes it an invaluable place to study gas/aerosol interactions.

A global chemical model coupled to a GCM was used to simulate based upon ECMWF reanalysis the ozone over the region during the period of the field study. The heterogeneous reactions of O3, N2O5, HNO3 and NO3 were accounted for. We estimate that during the field campaign, the effect of heterogeous reactions was to reduce by 8 to 10% the ozone concentration at MTC in cases when air had passed over the Mediterranean Sea. When air was coming from the Atlantic or continental Europe, the reduction of ozone is still 4%. This reduction is mostly due to the large uptake of HNO3 and is the the topic of ongoing work to assess how it affects the global cycle of O3 and the global nitrogen budget.
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Chemie/Chemie der Atmosphäre
External Affiliations:Laboratoire des Sciences du Climat et de l'Environnement, 91190 Gif-sur-Yvette Cedex, France, Joint Research Centre, 21020 Ispra, Italy, CNR ISAC, via Gobetti, 40129 Bologna, Italy, CNR, Via Fosso del Cavaliere, 00133 Rome, Italy, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.