Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Kohlenforschung     Collection: Publikationen MPI für Kohlenforschung     Display Documents



  history
ID: 20164.0, MPI für Kohlenforschung / Publikationen MPI für Kohlenforschung
The photophysics of 6-(1-pyrenyl)hexyl-11(1-pyrenyl)undecanoate dissolved in organic liquids and supercritical carbon dioxide: Impact on olefin metathesis
Authors:Pandey, S.; Kane, M. A.; Baker, G. A.; Bright, F. V.; Fürstner, A.; Seidel, G.; Leitner, W.
Language:English
Date of Publication (YYYY-MM-DD):2002-02-21
Title of Journal:Journal of Physical Chemistry B
Journal Abbrev.:J. Phys. Chem. B
Volume:106
Issue / Number:7
Start Page:1820
End Page:1832
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:The Leitner and Fürstner groups reported (Fürstner, A.; Koch, D., Langemann, K.; Leitner, W.; Six, C. Angew, Chem., Int. Ed. Engl 1997, 36, 2466) on the ring closing metathesis (RCM) of a 16-membered diene dissolved in supercritical CO2 (scCO(2)). The authors found that the cyclic product, indicative of an intramolecular RCM event, was formed in excellent yield when the CO2 density was high, but oligomers were formed by an acyclic diene metathesis (ADMET) pathway at lower CO2 densities. These results suggest that changes in the CO2 density lead to changes in the intra-vs intermolecular interactions between the 16-membered diene dissolved in ScCO2. To assess this issue in more detail, we have prepared 6-(1- pyrenyl)hexyl-11-(1-pyrenyl)-undecanoate [1- Py(CH2)(10)COO(CH2)(6)1-Py] in which we replaced the terminal alkenes of Letiner and Fürstner's original diene with the fluorophore pyrene. We have studied the pyrene excimer formation of 1-Py(CH2)(10)COO(CH2)(6)1-Py when it is dissolved in five organic solvents (cyclohexane, dichloromethane, ethanol, acetonitrile, and dimethyl sulfoxide) and supercritical carbon dioxide (scCO(2)) to determine how the tail segments interact with each other. The result show that the excimer formation mechanism is completely different when 1- Py(CH2)(10)COO(CH2)(6)1-Py is dissolved in scCO(2) or organic liquids. In liquids, excimer formation is purely dynamic in nature, there are two formation pathways to the excimer, and all the rates can be understood with the help of Kamlet-Taft linear solvent energy relationships. In scCO(2), We found that the 1-Py(CH2)(10)COO(CH2)(61)-Py excimer-to-monomer intensity ratio (E/M) correlates directly with (1) the observed RCM yield for Leitner and Fürstner's original 16-membered diene and (2) the solvent refractive index function. The steady-state and time-resolved fluorescence of 1-Py(CH2)(10)COO(CH2)(6)1-Py dissolved in scCO(2) show that there are two excimers that form in scCO(2) and their relative contributions change in a systematic way with changes in the CO2 pressure/density. Interestingly, the typical dynamically formed excimer species that emits at 470-480 nm (E1) forms within 2 ns of optical excitation; however, it is not the dominant species at low CO2 densities. E1 is equivalent to the species that goes on to form the RCM product in Leitner and Fürstner's original reaction. The second excimer (E2) emits in the 410-440 nm region. E2 is associated with intermolecular preassociated forms of the pyrene residues within a collection of 1- Py(CH2)(10)COO(CH2)(6)1-Py molecules, and this species dominates at low CO2 densities. E2 is equivalent to the species that goes on to form the oligomeric product in the original Leitner and Fürstner reaction. As the CO2 density increases, the El excimer contribution increases relative to the E2 excimer contribution. The combination of the fluorescence and reaction outcome results are used to explain Leitner and Furstner's previous density-dependent RCM yields.
Comment of the Author/Creator:Date: 2002, FEB 21
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Kohlenforschung
External Affiliations:New Mexico Inst Min & Technol, Dept Chem, Socorro, NM 87801 USA; SUNY Buffalo, Dept Chem, Nat Sci Complex, Buffalo, NY 14260 USA;
Identifiers:ISI:000173981900039 [ID No:1]
ISSN:1089-5647 [ID No:2]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.