Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Gravitationsphysik     Collection: Astrophysical Relativity     Display Documents



  history
ID: 206201.0, MPI für Gravitationsphysik / Astrophysical Relativity
Spacetimes admitting isolated horizons.
Authors:Lewandowski, Jerzy
Date of Publication (YYYY-MM-DD):2000-02-21
Title of Journal:Classical and Quantum Gravity
Volume:17
Issue / Number:4
Start Page:L53
End Page:L59
Copyright:Jahrbuch 2000, Copyright MPG 2000
Review Status:not specified
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:We characterize a general solution to the vacuum Einstein equations which admits isolated horizons. We show that it is a nonlinear superposition (in a precise sense) of the Schwarzschild metric with a certain free data set propagating tangentially to the horizon. This proves Ashtekar's conjecture about the structure of spacetime near the isolated horizon. The same superposition method applied to the Kerr metric gives another class of vacuum solutions admitting isolated horizons. More generally, a vacuum spacetime admitting any null, non-expanding, shear-free surface is characterized. The results are applied to show that, generically, the non-rotating isolated horizon does not admit a Killing vector field and a spacetime is not spherically symmetric near a symmetric horizon.
External Publication Status:published
Document Type:Article
Communicated by:Bernhard F. Schutz
Affiliations:MPI für Gravitationsphysik/Astrophysical Relativity
Identifiers:URL:http://xxx.lanl.gov/archive/gr-qc/
LOCALID:arXiv:gr-qc/9907058v2
DOI:10.1088/0264-9381/17/4/101
ISSN:0264-9381
Full Text:
You have privileges to view the following file(s):
9907058v2.pdf  [117,00 Kb] [Comment:Arxiv]  
 
q004l1.pdf  [88,00 Kb] [Comment:Online Journal]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.