Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Plasmaphysik     Collection: Articles, Books, Inbooks     Display Documents

ID: 21225.0, MPI für Plasmaphysik / Articles, Books, Inbooks
Steady state advanced scenarios at ASDEX Upgrade
Authors:Sips, A. C. C.; Arslanbekov, R.; Atanasiu, C.; Becker, W.; Becker, G.; Behler, K.; Behringer, K.; Bergmann, A.; Bilato, R.; Bolshukhin, D.; Borrass, K.; Braams, B.; Brambilla, M.; Braun, F.; Buhler, A.; Conway, G.; Coster, D.; Drube, R.; Dux, R.; Egorov, S.; Eich, T.; Engelhardt, K.; Fahrbach, H. U.; Fantz, U.; Faugel, H.; Foley, M.; Fournier, K. B.; Franzen, P.; Fuchs, J. C.; Gafert, J.; Gantenbein, G.; Gehre, O.; Geier, A.; Gernhardt, J.; Gruber, O.; Gude, A.; Günter, S.; Haas, G.; Hartmann, D.; Heger, B.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Hofmeister, F.; Hohenöcker, H.; Horton, L.; Igochine, V.; Jacobi, D.; Jakobi, M.; Jenko, F.; Kallenbach, A.; Kardaun, O.; Kaufmann, M.; Keller, A.; Kendl, A.; Kim, J. W.; Kirov, K.; Kochergov, R.; Kollotzek, H.; Kraus, W.; Krieger, K.; Kurzan, B.; Lang, P. T.; Lauber, P.; Laux, M.; Leuterer, F.; Lohs, A.; Lorenz, A.; Maggi, C.; Maier, H.; Mank, K.; Manso, M. E.; Maraschek, M.; Mast, K. F.; McCarthy, P.; Meisel, D.; Meister, H.; Meo, F.; Merkel, R.; Merkl, D.; Mertens, V.; Monaco, F.; Mück, A.; Müller, H. W.; Münich, M.; Murmann, H.; Na, Y. S.; Neu, G.; Neu, R.; Neuhauser, J.; Noterdaeme, J. M.; Nunes, I.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pinches, S.; Poli, E.; Proschek, M.; Pugno, R.; Quigley, E.; Raupp, G.; Ribeiro, T.; Riedl, R.; Riondato, S.; Rohde, V.; Roth, J.; Ryter, F.; Saarelma, S.; Sandmann, W.; Schade, S.; Schilling, H. B.; Schneider, W.; Schramm, G.; Schweizer, S.; Scott, B.; Seidel, U.; Serra, F.; Sesnic, S.; Sihler, C.; Silva, A.; Speth, E.; Stäbler, A.; Steuer, K. H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tabasso, A.; Tanga, A.; Tardini, G.; Tichmann, C.; Treutterer, W.; Troppmann, M.; Varela, P.; Vollmer, O.; Wagner, D.; Wenzel, U.; Wesner, F.; Wolf, R.; Wolfrum, E.; Würsching, E.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H. P.; Zohm, H.
Date of Publication (YYYY-MM-DD):2002
Title of Journal:Plasma Physics and Controlled Fusion
Journal Abbrev.:Plasma Phys. Control. Fusion
Issue / Number:Suppl. 12B
Start Page:B69
End Page:B83
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:Recent experiments at ASDEX Upgrade have achieved advanced scenarios with high beta(N) (> 3) and confinement enhancement over ITER98(y, 2) scaling, H-H98y2 = 1.1-1.5, in steady state. These discharges have been obtained in a modified divertor configuration for ASDEX Upgrade, allowing operation at higher triangularity, and with a changed neutral beam injection (NBI) system, for a more tangential, off-axis beam deposition. The figure of merit, beta(N)H(ITER89-P) reaches up to 7.5 for several seconds in plasmas approaching stationary conditions. These advanced tokamak discharges have low magnetic shear in the centre, with q on-axis near 1, and edge safety factor, q(95) in the range 3.3-4.5. This q-profile is sustained by the bootstrap current, NBI-driven current and fishbone activity in the core. The off-axis heating leads to a strong peaking of the density profile and impurity accumulation in the core. This can be avoided by adding some central heating from ion cyclotron resonance heating or electron cyclotron resonance heating, since the temperature profiles are stiff in this advanced scenario (no internal transport barrier). Using a combination of NBI and gas fuelling line, average densities up to 80-90% of the Greenwald density are achieved, maintaining good confinement. The best integrated results in terms of confinement, stability and ability to operate at high density are obtained in highly shaped configurations, near double null, with delta = 0.43. At the highest densities, a strong reduction of the edge localized mode activity similar to type 11 activity is observed, providing a steady power load on the divertor, in the range of 6 MW m(-2), despite the high input power used (> 10 MW).
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Plasmaphysik/Tokamak Scenario Development (E1)
External Affiliations:Princeton Univ, Princeton, NJ 08544 USA; Tech Univ St Petersburg, CIS, St Petersburg, Russia; Univ Augsburg, D-8900 Augsburg, Germany; Natl Univ Ireland Univ Coll Cork, Cork, Ireland; Lawrence Livermore Natl Lab, Livermore, CA USA; Univ Stuttgart, IPF, D-7000 Stuttgart, Germany; EURATOM, IST, Lisbon, Portugal; IAP, Vienna, Austria; VTT Tekes, HUT Tekes, Helsinki, Finland
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.