Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Entwicklungsbiologie     Collection: Abteilungsunabhängige Arbeitsgruppen     Display Documents



  history
ID: 226072.0, MPI für Entwicklungsbiologie / Abteilungsunabhängige Arbeitsgruppen
Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea.
Authors:Treusch, A.H.; Kletzin, A.; Raddatz, Günter; Ochsenreiter, T.; Quaiser, A.; Meurer, G.; Schuster, Stephan; Schleper, C.
Language:English
Date of Publication (YYYY-MM-DD):2004-09
Title of Journal:Environmental Microbiology
Volume:6
Issue / Number:9
Start Page:970
End Page:980
Sequence Number of Article:15305922
Review Status:not specified
Audience:Not Specified
Abstract / Description:Complex genomic libraries are increasingly being used to retrieve complete genes, operons or large genomic fragments directly from environmental samples, without the need to cultivate the respective microorganisms. We report on the construction of three large-insert fosmid libraries in total covering 3 Gbp of community DNA from two different soil samples, a sandy ecosystem and a mixed forest soil. In a fosmid end sequencing approach including 5376 sequence tags of approximately 700 bp length, we show that mostly bacterial and, to a much lesser extent, archaeal and eukaryotic genome fragments (approximately 1% each) have been captured in our libraries. The diversity of putative protein-encoding genes, as reflected by their distribution into different COG clusters, was comparable to that encoded in complete genomes of cultivated microorganisms. A huge variety of genomic fragments has been captured in our libraries, as seen by comparison with sequences in the public databases and by the large variation in G+C contents. We dissect differences between the libraries, which relate to the different ecosystems analysed and to biases introduced by different DNA preparations. Furthermore, a range of taxonomic marker genes (other than 16S rRNA) has been identified that allows the assignment of genome fragments to specific lineages. The complete sequences of two genome fragments identified as being affiliated with Archaea, based on a gene encoding a CDC48 homologue and a thermosome subunit, respectively, are presented and discussed. We thereby extend the genomic information of uncultivated crenarchaeota from soil and offer hints to specific metabolic traits present in this group.
External Publication Status:published
Document Type:Article
Affiliations:MPI für Entwicklungsbiologie/Abteilungsunabhängige Arbeitsgruppen
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.