Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Informatik     Collection: Computer Graphics Group     Display Documents



ID: 231355.0, MPI für Informatik / Computer Graphics Group
Normal Based Estimation of the Curvature Tensor for Triangular Meshes
Authors:Theisel, Holger; Rössl, Christian; Zayer, Rhaleb; Seidel, Hans-Peter
Editors:Cohen-Or, Daniel; Ko, Hyeong-Seok; Terzopoulos, Demetri; Warren, Joe
Language:English
Publisher:IEEE
Place of Publication:Los Alamitos, USA
Date of Publication (YYYY-MM-DD):2004
Title of Proceedings:12th Pacific Conference on Computer Graphics and Applications, PG 2004
Start Page:288
End Page:297
Place of Conference/Meeting:Seoul, South Korea
(Start) Date of Conference/Meeting
 (YYYY-MM-DD):
2004-10-06
Review Status:not specified
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:We introduce a new technique for estimating the curvature tensor of a
triangular mesh. The input of the algorithm is only a single triangle equipped
with its (exact or estimated) vertex normals. This way we get a smooth function
of the curvature tensor inside each triangle of the mesh. We show that the
error of the new method is comparable with the error of a cubic fitting
approach if the incorporated normals are estimated. If the exact normals of the
underlying surface are available at the vertices, the error drops signifi-
cantly. We demonstrate the applicability of the new estimation at a rather
complex data set.
Last Change of the Resource (YYYY-MM-DD):2005-04-27
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Hans-Peter Seidel
Affiliations:MPI für Informatik/Computer Graphics Group
Identifiers:ISBN:0-7695-2234-3
LOCALID:C125675300671F7B-32AFDE8594758F3EC1256EBF0032FD01-...
Full Text:
You have privileges to view the following file(s):
theisel_PG04.pdf  [4,00 Mb] [Comment:file from upload service]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.