Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Pflanzenphysiologie     Collection: Publikationen Pflanzenphysiologie     Display Documents



  history
ID: 251453.0, MPI für molekulare Pflanzenphysiologie / Publikationen Pflanzenphysiologie
Particle bombardment and the genetic enhancement of crops: myths and realities
Authors:Altpeter, F.; Baisakh, N.; Beachy, R.; Bock, R.; Capell, T.; Christou, P.; Daniell, H.; Datta, K.; Datta, S.; Dix, P. J.; Fauquet, C.; Huang, N.; Kohli, A.; Mooibroek, H.; Nicholson, L.; Nguyen, T. T.; Nugent, G.; Raemakers, K.; Romano, A.; Somers, D. A.; Stoger, E.; Taylor, N.; Visser, R.
Language:English
Date of Publication (YYYY-MM-DD):2005-04
Title of Journal:Molecular Breeding
Journal Abbrev.:Mol Breeding
Volume:15
Issue / Number:3
Start Page:305
End Page:327
Review Status:not specified
Audience:Not Specified
Abstract / Description:DNA transfer by particle bombardment makes use of physical processes to achieve the transformation of crop plants. There is no dependence on bacteria, so the limitations inherent in organisms such as Agrobacterium tumefaciens do not apply. The absence of biological constraints, at least until DNA has entered the plant cell, means that particle bombardment is a versatile and effective transformation method, not limited by cell type, species or genotype. There are no intrinsic vector requirements so transgenes of any size and arrangement can be introduced, and multiple gene cotransformation is straightforward. The perceived disadvantages of particle bombardment compared to Agrobacterium-mediated transformation, i.e. the tendency to generate large transgene arrays containing rearranged and broken transgene copies, are not borne out by the recent detailed structural analysis of transgene loci produced by each of the methods. There is also little evidence for major differences in the levels of transgene instability and silencing when these transformation methods are compared in agriculturally important cereals and legumes, and other non-model systems. Indeed, a major advantage of particle bombardment is that the delivered DNA can be manipulated to influence the quality and structure of the resultant transgene loci. This has been demonstrated in recently reported strategies that favor the recovery of transgenic plants containing intact, single-copy integration events, and demonstrating high-level transgene expression. At the current time, particle bombardment is the most efficient way to achieve plastid transformation in plants and is the only method so far used to achieve mitochondrial transformation. In this review, we discuss recent data highlighting the positive impact of particle bombardment on the genetic transformation of plants, focusing on the fate of exogenous DNA, its organization and its expression in the plant cell. We also discuss some of the most important applications of this technology including the deployment of transgenic plants under field conditions.
Free Keywords:crops
; genetic engineering
; particle bombardment
; transformation
; transgene expression
; transgene structure
; transgenic plants
; transgenic rice plants
; polyamine biosynthetic-pathway
; vector backbone sequences
; secale-cereale l.
; oryza-sativa l.
; agrobacterium-mediated transformation
; high-velocity microprojectiles
; bacterial-blight resistance
; green fluorescent protein
; reading frame reveals
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für molekulare Pflanzenphysiologie
External Affiliations:Univ Lleida, Dept Prod Vegetal & Ciencia Forestal, Av Alcalde Rovira Roure 191, E-25198 Lleida, Spain
Univ Lleida, Dept Prod Vegetal & Ciencia Forestal, E-25198 Lleida, Spain
Univ Florida, IFAS, Dept Agron, Lab Mol Plant Physiol, Gainesville, FL 32611 USA
Int Rice Res Inst, Div Plant Breeding Genet & Biochem, Manila 1099, Philippines
Danforth Plant Sci Ctr, St Louis, MO USA
Univ Munster, Inst Biochem & Biotechnol Pflanzen, D-48143 Munster, Germany
Max Planck Inst Mol Pflanzenphysiol, D-14476 Golm, Germany
Univ Cent Florida, Dept Mol Biol & Microbiol, Orlando, FL 32816 USA
Natl Univ Ireland Maynooth, Dept Biol, Inst Bioengn & Agroecol, Maynooth, Kildare, Ireland
Danforth Plant Sci Ctr, Int Lab Trop Agr Biotechnol, St Louis, MO USA
Ventria Biosci, Sacramento, CA 95834 USA
Univ Newcastle Upon Tyne, Sch Biol, Inst Res Environm & Sustainabil, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
Univ Wageningen & Res Ctr, Agrotechnol & Food Innovat BV, Dept Bioconvers, NL-6708 PD Wageningen, Netherlands
John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England
La Trobe Univ, Ctr Plant Biotechnol, Dept Primary Ind, Primary Ind Res Victoria, Bundoora, Vic 3086, Australia
Univ Wageningen & Res Ctr, Lab Plant Breeding, NL-6700 AJ Wageningen, Netherlands
Univ Hosp Maastricht, Dept Obstet & Gynaecol, Res Inst GROW, NL-6202 AZ Maastricht, Netherlands
Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA
Rhein Westfal TH Aachen, Inst Mol Biotechnol, D-52074 Aachen, Germany
Identifiers:ISI:000228974300006 [ID No:1]
ISI:000228974300006 [ID No:2]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.