Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Pflanzenphysiologie     Collection: Publikationen Pflanzenphysiologie     Display Documents



  history
ID: 251471.0, MPI für molekulare Pflanzenphysiologie / Publikationen Pflanzenphysiologie
The critical role of Arabidopsis electron-transfer flavoprotein: Ubiquinone oxidoreductase during dark-induced starvation
Authors:Ishizaki, K.; Larson, T. R.; Schauer, N.; Fernie, A. R.; Graham, I. A.; Leaver, C. J.
Language:English
Date of Publication (YYYY-MM-DD):2005-09
Title of Journal:Plant Cell
Journal Abbrev.:Plant Cell
Volume:17
Issue / Number:9
Start Page:2587
End Page:2600
Review Status:not specified
Audience:Not Specified
Abstract / Description:In mammals, electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in beta-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation.
Free Keywords:coenzyme-a dehydrogenase
; acyl-coa dehydrogenases
; beta-oxidation pathway
; rat-liver mitochondria
; amino-acid catabolism
; chlorophyll degradation
; respiratory-chain
; valine catabolism
; alpha-oxidation
; gene-expression
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für molekulare Pflanzenphysiologie/Molekulare Physiologie/AG Willmitzer/Fernie
External Affiliations:Univ Oxford, Dept Plant Sci, S Parks Rd, Oxford OX1 3RB, England
Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
Univ York, Ctr Noverl Agr Prod, Dept Biol, York YO10 5YW, N Yorkshire, England
Max Planck Inst Mol Pflanzenphysiol, D-14476 Golm, Germany
Identifiers:ISI:000231598400015 [ID No:1]
ISI:000231598400015 [ID No:2]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.