Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Meteorologie     Collection: Ocean in the Earth System     Display Documents

ID: 256386.0, MPI für Meteorologie / Ocean in the Earth System
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
Authors:Orr, J. C.; Fabry, V. J.; Aumont, O.; Bopp, L.; Doney, S. C.; Feely, R. A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; Key, R. M.; Lindsay, K.; Maier-Reimer, E.; Matear, R.; Monfray, P.; Mouchet, A.; Najjar, R. G.; Plattner, G. K.; Rodgers, K. B.; Sabine, C. L.; Sarmiento, J. L.; Schlitzer, R.; Slater, R. D.; Totterdell, I. J.; Weirig, M. F.; Yamanaka, Y.; Yool, A.
Date of Publication (YYYY-MM-DD):2005-09-29
Title of Journal:Nature
Journal Abbrev.:Nature
Issue / Number:7059
Start Page:681
End Page:686
Review Status:Peer-review
Audience:Not Specified
Abstract / Description:Today’s surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide
concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate
saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and
some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the
ocean–carbon cycle to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future
emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become
undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this
undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live
pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their
aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude
ecosystems could develop within decades, not centuries as suggested previously
External Publication Status:published
Document Type:Article
Communicated by:Carola Kauhs
Affiliations:MPI für Meteorologie/Ocean in the Earth System
External Affiliations:CEA Saclay, UMR CEA CNRS, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.; Calif State Univ San Marcos, Dept Biol Sci, San Marcos, CA 92096 USA.; Ctr IRD Bretagne, LOCEAN, F-29280 Plouzane, France.; Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.; NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.; NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA.; Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.; Frontier Res Ctr Global Change, Yokohama, Kanagawa 2360001, Japan.; Univ Bern, Inst Phys, CH-3012 Bern, Switzerland.; Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA.; Natl Ctr Atmospher Res, Boulder, CO 80307 USA.; CSIRO, Marine Res & Antarctic Climate & Ecosyst CRC, Hobart, Tas 7001, Australia.; Univ Liege, Astrophys & Geophys Inst, B-4000 Liege, Belgium.; Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA.; Univ Paris 06, LOCEAN, F-75252 Paris, France.; Alfred Wegener Inst Polar & Marine Res, D-27515 Bremerhaven, Germany.; Natl Oceanog Ctr Southampton, Southampton SO14 3ZH, Hants, England.
Full Text:
Sorry, no privileges
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.