Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Meteorologie     Collection: Climate Processes     Display Documents

ID: 256402.0, MPI für Meteorologie / Climate Processes
FEBUKO and MODMEP: Field measurements and modelling of aerosol and cloud multiphase processes
Authors:Herrmann, H.; Wolke, R.; Mueller, K.; Brueggemann, E.; Gnauk, T.; Barzaghi, P.; Mertes, S.; Lehmann, K.; Massling, A.; Birmili, W.; Wiedensohler, A.; Wierprecht, W.; Acker, K.; Jaeschke, W.; Kramberger, H.; Svrcina, B.; Baechmann, K.; Collett, J. L.; Galgon, D.; Schwirn, K.; Nowak, A.; van Pinxteren, D.; Plewka, A.; Chemnitzer, R.; Rued, C.; Hofmann, D.; Tilgner, A.; Diehl, K.; Heinold, B.; Hinneburg, D.; Knoth, O.; Sehili, A. M.; Simmel, M.; Wurzler, S.; Majdik, Z.; Mauersberger, G.; Mueller, F.
Date of Publication (YYYY-MM-DD):2005-07
Title of Journal:Atmospheric Environment
Journal Abbrev.:Atmos. Environ.
Issue / Number:23-24
Start Page:4169
End Page:4183
Review Status:Peer-review
Audience:Not Specified
Abstract / Description:An overview of the two FEBUKO aerosol–cloud interaction field experiments in the Thüringer Wald (Germany) in October 2001 and 2002 and the corresponding modelling project MODMEP is given. Experimentally, a variety of measurement methods were deployed to probe the gas phase, particles and cloud droplets at three sites upwind, downwind and within an orographic cloud with special emphasis on the budgets and interconversions of organic gas and particle phase constituents. Out of a total of 14 sampling periods within 30 cloud events three events (EI, EII and EIII) are selected for detailed analysis. At various occasions an impact of the cloud process on particle chemical composition such as on the organic compounds content, sulphate and nitrate and also on particle size distributions and particle mass is observed. Moreover, direct phase transfer of polar organic compound from the gas phase is found to be very important for the understanding of cloudwater composition.

For the modelling side, a main result of the MODMEP project is the development of a cloud model, which combines a complex multiphase chemistry with detailed microphysics. Both components are described in a fine-resolved particle/drop spectrum. New numerical methods are developed for an efficient solution of the entire complex model. A further development of the CAPRAM mechanism has lead to a more detailed description of tropospheric aqueous phase organic chemistry. In parallel, effective tools for the reduction of highly complex reaction schemes are provided. Techniques are provided and tested which allow the description of complex multiphase chemistry and of detailed microphysics in multidimensional chemistry-transport models.
Free Keywords:hill cap cloud experiment; aerosol; cloud water; trace gases; physico-chemical analysis
External Publication Status:published
Document Type:Article
Affiliations:MPI für Meteorologie/Climate Processes (-2005)
External Affiliations:Leibniz Inst Tropospharenforschung, D-04318 Leipzig, Germany.; Brandenburg Tech Univ Cottbus, Lehrstuhl Luftchem & Luftreinhaltung, D-12489 Berlin, Germany.; Univ Frankfurt, Zentrum Unweltforsch, D-60325 Frankfurt, Germany.; Tech Univ Darmstadt, Inst Anorgan Chem, D-64287 Darmstadt, Germany.; Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
Full Text:
You have privileges to view the following file(s):
AtmEnv_39-4169.pdf  [394,00 Kb]   
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.