Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Festkörperforschung     Collection: FKF Publikationen 2006     Display Documents



  history
ID: 273532.0, MPI für Festkörperforschung / FKF Publikationen 2006
Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding
Authors:Curran, S. A.; Zhang, D. H.; Wondmagegn, W. T.; Ellis, A. V.; Cech, J.; Roth, S.; Carroll, D. L.
Language:English
Date of Publication (YYYY-MM-DD):2006
Title of Journal:Journal of Materials Research
Volume:21
Issue / Number:4
Start Page:1071
End Page:1077
Review Status:Peer-review
Audience:Not Specified
Abstract / Description:Composite formation between carbon nanotubes and polymers can
dramatically enhance the electrical and thermal properties of the
combined materials. We have prepared a composite from polystyrene and
multi-walled carbon nanotubes (MWCNT) and, unlike traditional
techniques of composite formation, we chose to polymerize styrene from
the surface of dithiocarboxylic ester-functionalized MWCNTs to
fabricate a unique composite material, a new technique dubbed "gRAFT"
polymerization. The thermal stability of the polymer matrix in the
covalently linked MWCNT-polystyrene composite is significantly
enhanced, as demonstrated by a 15 degrees C increase of the
decomposition temperature than that of the noncovalently linked
MWCNT-polystyrene blend. Thin films made from the composite with low
MWCNT loadings (< 0.9 wt%) are optically transparent, and we see no
evidence of aggregation of nanotubes in the thin film or solution. The
result from the conductivity measurement as a function of MWCNT
loadings suggests two charge transport mechanisms: charge hopping in
low MWCNT loadings (0.02-0.6 wt%) and ballistic quantum conduction in
high loadings (0.6-0.9 wt%). The composite exhibits dramatically
enhanced conductivity up to 33 S m(-1) at a low MWCNT loading (0.9 wt%).
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Festkörperforschung
External Affiliations:New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
; New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
; New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA.
; New Mexico State Univ, Dept Elect & Comp Engn, Las Cruces, NM 88003 USA.
; Ind Res Ltd, Gracefield Res Ctr, Lower Hutt 6009, New Zealand.
; Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany.
; Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA.
Identifiers:ISI:000236723500032 [ID No:1]
ISSN:0884-2914 [ID No:2]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.