Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Meteorologie     Collection: Atmosphere in the Earth System     Display Documents



  history
ID: 304285.0, MPI für Meteorologie / Atmosphere in the Earth System
Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past
Authors:Eyring, V.; Butchart, N.; Waugh, D. W.; Akiyoshi, H.; Austin, J.; Bekki, S.; Bodeker, G. E.; Boville, B. A.; Bruhl, C.; Chipperfield, M. P.; Cordero, E.; Dameris, M.; Deushi, M.; Fioletov, V. E.; Frith, S. M.; Garcia, R. R.; Gettelman, A.; Giorgetta, M. A.; Grewe, V.; Jourdain, L.; Kinnison, D. E.; Mancini, E.; Manzini, E.; Marchand, M.; Marsh, D. R.; Nagashima, T.; Newman, P. A.; Nielsen, J. E.; Pawson, S.; Pitari, G.; Plummer, D. A.; Rozanov, E.; Schraner, M.; Shepherd, T. G.; Shibata, K.; Stolarski, R. S.; Struthers, H.; Tian, W.; Yoshiki, M.
Language:English
Date of Publication (YYYY-MM-DD):2006-11-23
Title of Journal:Journal of Geophysical Research-Atmospheres
Journal Abbrev.:J. Geophys. Res.-Atmos.
Volume:111
Issue / Number:D22
Sequence Number of Article:D22308
Review Status:Peer-review
Audience:Not Specified
Abstract / Description:Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:Carola Kauhs
Affiliations:MPI für Meteorologie
External Affiliations:Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Wessling, Germany.; Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan.; NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA.; CNRS, Serv Aeron, F-75252 Paris, France.; Natl Inst Water & Atmospher Res, Lauder, New Zealand.; Met Off, Climate Res Div, Exeter EX1 3PB, Devon, England.; Natl Ctr Atmospher Res, Boulder, CO 80307 USA.; Max Planck Inst Chem, D-55128 Mainz, Germany.; Univ Leeds, Inst Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England.; San Jose State Univ, Dept Meteorol, San Jose, CA 95192 USA.; Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmospher, D-82234 Wessling, Germany.; Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan.; Environm Canada, Toronto, ON M3H 5T4, Canada.; Sci Syst & Applicat Inc, Lanham, MD 20706 USA.; Max Planck Inst Meteorol, D-20146 Hamburg, Germany.; Univ Aquila, Dipartimento Fis, I-67010 Laquila, Italy.; Ist Nazl Geofis & Vulcanol, I-40128 Bologna, Italy.; NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Ouranos Consortium, Montreal, PQ H3A 1B9, Canada.; Observ World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Switzerland.; ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland.; Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.; Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.
Identifiers:DOI:10.1029/2006JD007327 [ID No:1]
ISSN:0148-0227 [ID No:2]
Full Text:
Sorry, no privileges
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.