Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 308626.0, MPI für Astronomie / Publikationen_mpia
Submillimeter emission from the hot molecular jet HH 211
Authors:Palau, A.; Ho, P. T. P.; Zhang, Q.; Estalella, R.; Hirano, N.; Shang, H.; Lee, C. F.; Bourke, T. L.; Beuther, H.; Kuan, Y. J.
Date of Publication (YYYY-MM-DD):2006
Journal Abbrev.:The Astrophysical Journal
Volume:636
Start Page:L137
End Page:L140
Audience:Not Specified
Abstract / Description:We observed the HH 211 jet in the submillimeter continuum and the CO (3-2) and SiO (8-7) transitions with the Submillimeter Array. The continuum source detected at the center of the outflow shows an elongated morphology, perpendicular to the direction of the outflow axis. The high-velocity emission of both molecules shows a knotty and highly collimated structure. The SiO (8-7) emission at the base of the outflow, close to the driving source, spans a wide range of velocities, from -20 up to 40 km s-1. This suggests that a wide-angle wind may be the driving mechanism of the HH 211 outflow. For distances >=5" (~1500 AU) from the driving source, emission from both transitions follows a Hubble-law behavior, with SiO (8-7) reaching higher velocities than CO (3-2) and being located upstream of the CO (3-2) knots. This indicates that the SiO (8-7) emission is likely tracing entrained gas very close to the primary jet, while the CO (3-2) is tracing less dense entrained gas. From the SiO (5-4) data of Hirano et al., we find that the SiO (8-7)/SiO (5-4) brightness temperature ratio along the jet decreases for knots far from the driving source. This is consistent with the density decreasing along the jet, from (3-10)×106 cm-3 at 500 AU to (0.8-4)×106 cm-3 at 5000 AU from the driving source.
Free Keywords:ISM: individual (HH 211); ISM: Jets and Outflows; Stars: Formation
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bi...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.