Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Biochemie     Collection: Structural Biology (W. Baumeister)     Display Documents

ID: 318676.0, MPI für Biochemie / Structural Biology (W. Baumeister)
Engineered fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (ricm)
Authors:Gritsch, S.; Neumaier, K.; Schmitt, L.; Tampe, R.
Date of Publication (YYYY-MM-DD):1995
Title of Journal:Biosensors & Bioelectronics
Issue / Number:9-10
Start Page:805
End Page:812
Review Status:not specified
Audience:Not Specified
Abstract / Description:In molecular biology, biotechnology, and protein-engineering, the expression of histidine fusion proteins is a very powerful technique for the identification and one-step purification based on the interaction of the histidine stretch with immobilized metal complexes. By synthesis of a novel class of chelator lipids, this technique was combined with the concept of self-assembly leading to interfaces for immobilization and orientation of histidine-ragged biomolecules (Schmitt et al., 1994). Here, these chelator lipid layers were transferred onto solid substrate by vesicle fusion and Langmuir-Blodgett-techniques. Specific binding of a peptide containing an oligohistidine sequence to these functionalized interfaces was demonstrated by reflection interference contrast microscopy (RICM). Due to the phase separation behaviour of lipid mixtures, the chelator lipid interface could be further structured in two dimensions. Binding and organization of histidine-tagged molecules at these two-dimensional recognition arrays was imaged by RICM with a layer thickness resolution of 0.2 nm, and 0.5 mu m laterally. Specific docking can be triggered by adding nickel ions and disrupted by EDTA. This concept opens up possibilities for reversible immobilization, enrichment and organization of histidine fusion proteins at interfaces and their application in biosensing. [References: 11]
Free Keywords:Membranes; Self-assembly; Protein-engineering; Molecular recognition; Protein immobilization; Pattern formation.; Biotechnology & applied microbiology.
External Publication Status:published
Document Type:Article
Communicated by:Anton Hillebrand
Affiliations:MPI für Biochemie/Structural Biology (W. Baumeister)
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.