Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Kernphysik     Collection: Theory of Chaos, Fields and Statistical Inference     Display Documents

ID: 32827.0, MPI für Kernphysik / Theory of Chaos, Fields and Statistical Inference
Classical scattering from oscillating targets
Authors:Papachristou, P. K.; Diakonos, F. K.; Constantoudis, V.; Schmelcher, P.; Benet, L.
Date of Publication (YYYY-MM-DD):2002-12-30
Title of Journal:Physics Letters A
Journal Abbrev.:Phys. Lett. A
Issue / Number:2-3
Start Page:116
End Page:126
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:We study planar classical scattering from an oscillating heavy target whose dynamics defines a five-dimensional phase space. Although the system possesses no periodic orbits, and thus topological chaos is not present, the scattering functions display a variety of structures on different time scales. These structures are due to scattering events with a strong energy transfer from the projectile to the moving disk resulting in low-velocity peaks. We encounter initial conditions for which the projectile exhibits infinitely many bounces with the oscillating disk. Our numerical investigations are supported by analytical results on a specific model with a simple time-law. The observed properties possess universal character for scattering off oscillating targets. (C) 2002 Elsevier Science B.V. All rights reserved.
External Publication Status:published
Document Type:Article
Affiliations:MPI für Kernphysik/Guest Groups and Emeriti/Theory (H.A. Weidenmüller)
External Affiliations:Univ Heidelberg, Inst Chem Phys, D-69120 Heidelberg, Germany; Univ Athens, Dept Phys, GR-15771 Athens, Greece; Natl Tech Univ Athens, Dept Phys, Athens 15780, Greece; Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
Identifiers:ISI:000180382100010 [ID No:1]
ISSN:0375-9601 [ID No:2]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.