Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Entwicklungsbiologie     Collection: Abteilung 1 - Protein Evolution (A. Lupas)     Display Documents



  history
ID: 331550.0, MPI für Entwicklungsbiologie / Abteilung 1 - Protein Evolution (A. Lupas)
A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin A autotransport.
Authors:Grosskinsky, U.; Schütz, M.; Fritz, M.; Schmid, Y.; Lamparter, Marina; Sczensny, Pawel; Lupas, Andrei; Autenrieth, Ingo; Linke, Dirk
Language:English
Date of Publication (YYYY-MM-DD):2007-12
Title of Journal:J Bacteriol
Volume:189(24)
Start Page:9011
End Page:9019
Sequence Number of Article:17921300
Review Status:not specified
Audience:Not Specified
Abstract / Description:The Yersinia adhesin A (YadA) is a trimeric autotransporter adhesin of enteric yersiniae. It consists of three major domains: a head mediating adherence to host cells, a stalk involved in serum resistance, and an anchor that forms a membrane pore and is responsible for the autotransport function. The anchor contains a glycine residue, nearly invariant throughout trimeric autotransporter adhesins, that faces the pore lumen. To address the role of this glycine, we replaced it with polar amino acids of increasing side chain size and expressed wild-type and mutant YadA in Escherichia coli. The mutations did not impair the YadA-mediated adhesion to collagen and to host cells or the host cell cytokine production, but they decreased the expression levels and stability of YadA trimers with increasing side chain size. Likewise, autoagglutination and resistance to serum were decreased in these mutants. We found that the periplasmic protease DegP is involved in the degradation of YadA and that in an E. coli degP deletion strain, mutant versions of YadA were expressed almost to wild-type levels. We conclude that the conserved glycine residue affects both the export and the stability of YadA and consequently some of its putative functions in pathogenesis.
External Publication Status:published
Document Type:Article
Affiliations:MPI für Entwicklungsbiologie
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.