Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für biologische Kybernetik     Collection: Biologische Kybernetik     Display Documents



ID: 350396.0, MPI für biologische Kybernetik / Biologische Kybernetik
Accurate Splice site Prediction Using Support Vector Machines
Authors:Sonnenburg, S.; Schweikert, G.; Philips, P.; Behr, J.; Rätsch, G.
Date of Publication (YYYY-MM-DD):2007-12
Title of Journal:BMC Bioinformatics
Volume:8
Issue / Number:Suppl.10
Start Page:1
End Page:16
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:Background: For splice site recognition, one has to solve two classification problems:
discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems
typically rely on Markov Chains to solve these tasks.
Results: In this work we consider Support Vector Machines for splice site recognition. We employ
the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in
several experiments where we compare its prediction accuracy with that of recently proposed
systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis
elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our
performance estimates indicate that splice sites can be recognized very accurately in these genomes
and that our method outperforms many other methods including Markov Chains, GeneSplicer and
SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction
tool ready to be used for incorporation in a gene finder.
Availability: Data, splits, additional information on the model selection, the whole genome
predictions, as well as the stand-alone prediction tool are available for download at http://
www.fml.mpg.de/raetsch/projects/splice.
External Publication Status:published
Document Type:Article
Communicated by:Holger Fischer
Affiliations:MPI für biologische Kybernetik/Empirical Inference (Dept. Schölkopf)
Identifiers:LOCALID:4809
URL:http://www.biomedcentral.com/content/pdf/1471-2105...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.