Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Biomedizin     Collection: Publikationen molekulare Biomedizin     Display Documents



ID: 357248.0, MPI für molekulare Biomedizin / Publikationen molekulare Biomedizin
Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation
Authors:Wei, F.; Schöler, H. R.; Atchison, M. L.
Date of Publication (YYYY-MM-DD):2007
Title of Journal:J Biol Chem
Volume:282
Issue / Number:29
Start Page:21551
End Page:21560
Audience:Not Specified
Abstract / Description:Transcription factor Oct4 is a master regulator affecting the fate of pluripotent stem cells and germ cell precursors. Oct4 expression is tightly regulated, and small changes in expression level can have dramatic effects on differentiation or oncogenesis. Post-translational modifications including phosphorylation and ubiquitination have been reported to regulate Oct4 transcriptional activity. Here we show that Oct4 is a target for small ubiquitin-related modifier (SUMO)-1 modification in vivo and in vitro. Sumoylation of Oct4 occurs at a single lysine, Lys(118), located at the end of the amino-terminal transactivation domain and next to the Pit1-Oct-Unc86 (POU) DNA binding domain. SUMO-1 and Oct4 colocalize at several promoter sequences in vivo, and a fraction of Oct4 molecules colocalized with SUMO-1 in nuclear aggregates. Sumoylation of Oct4 led to significantly increased Oct4 stability and increased DNA binding. In addition, SUMO-1 cotransfection led to augmented Oct4 transactivation potential that was reduced when the Oct4 sumoylation target site was mutated. Therefore, sumoylation of Oct4 results in increased stability, DNA binding, and transactivation and provides an important mechanism to regulate Oct4 activity.
Free Keywords:Animals Binding Sites Cell Line DNA/*chemistry *Gene Expression Regulation Humans Lysine/chemistry Mice NIH 3T3 Cells Octamer Transcription Factor-3/chemistry/*physiology Protein Binding Protein Structure, Tertiary Small Ubiquitin-Related Modifier Proteins/*metabolism *Trans-Activation (Genetics)
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für molekulare Biomedizin
Identifiers:URL:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.