Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 358694.0, MPI für Astronomie / Publikationen_mpia
Magnetic interaction of jets and molecular clouds in NGC 4258
Authors:Krause, M.; Fendt, C.; Neininger, N.
Date of Publication (YYYY-MM-DD):2007
Title of Journal:Astronomy and Astrophysics
Start Page:1037
End Page:1048
Audience:Not Specified
Abstract / Description:Context: <ASTROBJ>NGC 4258</ASTROBJ> is a well known spiral galaxy with a peculiar large scale jet flow detected in the radio and in Halpha. Due to the special geometry of the galaxy, the jets emerge from the nuclear region through the galactic disk - at least in the inner region. <BR /> Aims: Also the distribution of molecular gas looks different from that in other spiral galaxies: 12CO(1-0) emission has only been detected in the center and along the jets and only up to distances of about 50'' (1.8 kpc) from the nucleus. This concentration of CO along the jets is similar to what is expected as fuel for jet-induced star formation in more distant objects. The reason for the CO concentration along the inner jets in NGC 4258 was not understood and is the motivation for the observations presented here. <BR /> Methods: Using the IRAM interferometer at Plateau de Bure, we mapped the 12CO(1-0) emission of the central part of NGC 4258 along the nuclear jet direction in the inner 3 kpc. In order to get a properly positioned overlay with Halpha we observed NGC 4258 in Halpha at the Hoher List Observatory of the University of Bonn. <BR /> Results: We detected two parallel CO ridges along a position angle of -25° with a total length of about 80'' (2.8 kpc), separated by a CO depleted funnel with a width of about 5'' (175 pc). The Halpha emission is more extended and broader than the CO emission with its maximum just in between the two CO ridges. It seems to be mixed in location and in velocity with the CO emission. In CO we see a peculiar velocity distribution in the iso-velocity map and p-v diagrams. We discuss different scenarios for an interpretation and present a model which can explain the observational results consistently. <BR /> Conclusions: We propose here that the concentration of CO along the ridges is due to interaction of the rotating gas clouds with the jet's magnetic field by ambipolar diffusion (ion-neutral drift). This magnetic interaction is thought to increase the time the molecular clouds reside near the jet thus leading to the quasi-static CO ridge.
Free Keywords:galaxies: active; galaxies: individual: NGC 6445; galaxies: jets; magnetic fields; galaxies: ISM; radio lines: galaxies
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie

The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.