Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Dynamik komplexer technischer Systeme     Collection: Systems Biology     Display Documents



  history
ID: 367035.0, MPI für Dynamik komplexer technischer Systeme / Systems Biology
Methods for analysis of evolutive adaptation of E. coli
Authors:Feuer, R.; Ederer, M.; Trachtmann, N.; Sauter, T.; Gilles, E. D.; Sprenger, G.; Sawodny, O.
Language:English
Publisher:The Society of Instrumentation and Control Engineers (SICE)
Place of Publication:Tokyo, Japan
Date of Publication (YYYY-MM-DD):2007
Title of Proceedings:SICE 2007
Start Page:1359
End Page:1365
Physical Description:CD-ROM
Name of Conference/Meeting:International Conference on Instrumentation, Control and Information Technology (SICE 2007)
Place of Conference/Meeting:Takamatsu, Japan
(Start) Date of Conference/Meeting
 (YYYY-MM-DD):
2007-09-17
End Date of Conference/Meeting 
 (YYYY-MM-DD):
2007-09-20
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:Mathematical models of the metabolism of organisms like Escherichia coli provide a possibility to improve the production of industrial relevant compounds. These models allow predictions of the behavior of metabolism and thus proposals to change it to an industrial benefit. We use an innovative approach utilizing evolutionary adaptation for the activation of relevant biosynthesis pathways. The evolutionary trend of E. coli to optimal substrate yields is employed to maximize the production of an industrial desired compound. Pyruvate is a central metabolite in metabolism that is essential for survival. Under an evolutionary pressure an E. coli mutant with knock outs in the main pyruvate synthesis pathways deregulates alternative pyruvate synthesis pathways. Many of those alternative pathways operate via industrial relevant compounds. Thus their deregulation is an important step towards efficient production strains. This paper uses a metabolic network model and presents a method to predict possible deregulated pathways. Furthermore tools to analyze the pathways and to support their understanding are presented.
© Copyright 2008 IEEE – All Rights Reserved
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Ernst-Dieter Gilles
Affiliations:MPI für Dynamik komplexer technischer Systeme/Systems Biology
External Affiliations:Universität Stuttgart,
Institut für Systemdynamik,
70569 Stuttgart
Universität Stuttgart,
Institut für Mikrobiologie,
70569 Stuttgart
Identifiers:URL:http://dx.doi.org/10.1109/SICE.2007.4421194
ISBN:4-907764-27-8
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.