Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: Publikationen MPI-CBG 2008     Display Documents



ID: 414381.0, MPI für molekulare Zellbiologie und Genetik / Publikationen MPI-CBG 2008
Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy
Authors:Petrasek, Zdenek; Hoege, Carsten; Mashaghi, Alireza; Ohrt, Thomas; Hyman, Anthony A; Schwille, Petra
Date of Publication (YYYY-MM-DD):2008
Title of Journal:Biophysical Journal
Volume:95
Issue / Number:11
Start Page:5476
End Page:5486
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:The development and differentiation of complex organisms from the single fertilized egg is regulated by a variety of processes that all rely on the distribution and interaction of proteins. Despite the tight regulation of these processes with respect to temporal and spatial protein localization, exact quantification of the underlying parameters, such as concentrations and distribution coefficients, has so far been problematic. Recent experiments suggest that fluorescence correlation spectroscopy on a single molecule level in living cells has great promise in revealing these parameters with high precision. The optically challenging situation in multicellular systems such as embryos can be ameliorated by two-photon excitation, where scattering background and cumulative photobleaching is limited. A more severe problem is posed by the large range of molecular mobilities observed at the same time, as standard FCS relies strongly on the presence of mobility-induced fluctuations. In this study, we overcame the limitations of standard FCS. We analyzed in vivo polarity protein PAR-2 from eggs of Caenorhabditis elegans by beam-scanning FCS in the cytosol and on the cortex of C. elegans before asymmetric cell division. The surprising result is that the distribution of PAR-2 is largely uncoupled from the movement of cytoskeletal components of the cortex. These results call for a more systematic future investigation of the different cortical elements, and show that the FCS technique can contribute to answering these questions, by providing a complementary approach that can reveal insights not obtainable by other techniques.
External Publication Status:published
Document Type:Article
Communicated by:n.n.
Affiliations:MPI f�r molekulare Zellbiologie und Genetik
Identifiers:LOCALID:1123
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.