Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Gravitationsphysik     Collection: Quantum Gravity and Unified Theories     Display Documents



  history
ID: 439686.0, MPI für Gravitationsphysik / Quantum Gravity and Unified Theories
From weak coupling to spinning strings
Authors:Freyhult, Lisa; Rej, Adam; Zieme, Stefan
Date of Publication (YYYY-MM-DD):2010
Title of Journal:Journal of High Energy Physics
Volume:02
Sequence Number of Article:050
Review Status:not specified
Audience:Not Specified
Abstract / Description:We identify the gauge theory dual of a spinning string of minimal energy with spins S_1, S_2 on AdS_5 and charge J on S^5. For this purpose we focus on a certain set of local operators with two different types of covariant derivatives acting on complex scalar fields. We analyse the corresponding nested Bethe equations for the ground states in the limit of large spins. The auxiliary Bethe roots form certain string configurations in the complex plane, which enable us to derive integral equations for the leading and sub-leading contribution to the anomalous dimension. The results can be expressed through the observables of the sl(2) sub-sector, i.e. the cusp anomaly f(g) and the virtual scaling function B_L(g), rendering the strong-coupling analysis straightforward. Furthermore, we also study a particular sub-class of these operators specialising to a scaling limit with finite values of the second spin at weak and strong coupling.
External Publication Status:published
Document Type:Article
Communicated by:Hermann Nicolai
Affiliations:MPI für Gravitationsphysik/Quantum Gravity and Unified Theories
Identifiers:LOCALID:arXiv:0911.2458
DOI:10.1007/JHEP02(2010)050
Full Text:
You have privileges to view the following file(s):
0911.2458v1.pdf  [276,00 Kb] [Comment:arXiv:0911.2458v1 [hep-th]]  
 
JHEP02_2010_050.pdf  [844,00 Kb]   
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.