Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Meteorologie     Collection: Land in the Earth System     Display Documents



  history
ID: 441253.0, MPI für Meteorologie / Land in the Earth System
Contribution of oceanic and vegetation feedbacks to Holocene climate change in Central and Eastern Asia
Authors:Dallmeyer, A.; Claussen, M.; Otto, J.
Language:English
Date of Publication (YYYY-MM-DD):2010
Title of Journal:Climate of the Past
Volume:6
Start Page:195
End Page:218
Review Status:not specified
Audience:Not Specified
Abstract / Description:The impact of vegetation-atmosphere and ocean-atmosphere interactions on the mid- to late Holocene climate change as well as their synergy is studied for different parts of the Asian monsoon region, giving consideration to the large climatic and topographical heterogeneity in that area. We concentrate on temperature and precipitation changes as the main parameters describing monsoonal influenced climates. For our purpose, we analyse a set of coupled numerical experiments, performed with the comprehensive Earth system model ECHAM5/JSBACH-MPIOM under present-day and mid-Holocene (6 k) orbital configurations (Otto et al., 2009b). The temperature change caused by the insolation forcing reveals an enhanced seasonal cycle, with a pronounced warming in summer (0.58 K) and autumn (1.29 K) and a cooling in the other seasons (spring: -1.32 K; winter: -0.97 K). Most of this change can be attributed to the direct response of the atmosphere, but the ocean, whose reaction has a lagged seasonal cycle (warming in autumn and winter, cooling in the other seasons), strongly modifies the signal. The simulated contribution of dynamic vegetation is small and most effective in winter, where it slightly warms the near-surface atmosphere (approx. 0.03 K). The temperature difference attributed to the synergy is on average positive, but also small. Concerning the precipitation, the most remarkable change is the postponement and enhancement of the Asian monsoon (0.46 mm/day in summer, 0.53 mm/day in autumn), mainly related to the direct atmospheric response. On regional average, the interactive ocean (ca. 0.18 mm/day) amplifies the direct effect, but tends to weaken the East Asian summer monsoon and strongly increases the Indian summer monsoon rainfall rate (0.68 mm/day). The influence of dynamic vegetation on precipitation is comparatively small (< 0.04 mm/day). The synergy effect has no influence, on average.
External Publication Status:published
Document Type:Article
Communicated by:Kauhs
Affiliations:MPI für Meteorologie/Land in the Earth System (2005-)
MPI für Meteorologie/IMPRS Earth System Modelling
Identifiers:URL:http://www.clim-past.net/6/195/2010/cp-6-195-2010....
Full Text:
You have privileges to view the following file(s):
cp-6-195-2010.pdf  [1,00 Mb]   
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.