Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Gravitationsphysik     Collection: Geometric Analysis and Gravitation     Display Documents



  history
ID: 442030.0, MPI für Gravitationsphysik / Geometric Analysis and Gravitation
Convergent Null Data Expansions at Space-Like Infinity of Stationary Vacuum Solutions
Authors:Acena, Andres E.
Date of Publication (YYYY-MM-DD):2009-05
Title of Journal:Annales Henri Poincare
Volume:10
Issue / Number:2
Start Page:275
End Page:337
Review Status:not specified
Audience:Not Specified
Abstract / Description:We present a characterization of the asymptotics of all asymptotically flat, stationary solutions with non-vanishing ADM mass to Einstein’s vacuum field equations. This characterization is given in terms of two sequences of symmetric trace free tensors (we call them the ‘null data’), which determine a formal expansion of the solution, and which are in a one to one correspondence to Hansen’s multipoles. We obtain necessary and sufficient growth estimates on the null data to define an absolutely convergent series in a neighborhood of spatial infinity. This provides a complete characterization of all asymptotically flat, stationary vacuum solutions to the field equations with non-vanishing ADM mass.
External Publication Status:published
Document Type:Article
Communicated by:Gerhard Huisken
Affiliations:MPI für Gravitationsphysik/Geometric Analysis and Gravitation
Identifiers:ISI:000266371900002 [ID No:1]
ISSN:1424-0637 [ID No:2]
DOI:10.1007/s00023-009-0406-z
Full Text:
You have privileges to view the following file(s):
AHP10_275.pdf  [800,00 Kb] [Comment:Open Access Article]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.