Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



  history
ID: 448091.0, MPI für Astronomie / Publikationen_mpia
HD 100453: a link between gas-rich protoplanetary disks and gas-poor debris disks
Authors:Collins, K. A.; Grady, C. A.; Hamaguchi, K.; Wisniewski, J. P.; Brittain, S.; Sitko, M.; Carpenter, W. J.; Williams, J. P.; Mathews, G. S.; Williger, G. M.; van Boekel, R.; Carmona, A.; Henning, Th; van den Ancker, M. E.; Meeus, G.; Chen, X. P.; Petre, R.; Woodgate, B. E.
Language:English
Date of Publication (YYYY-MM-DD):2009
Title of Journal:The Astrophysical Journal
Journal Abbrev.:ApJ
Volume:697
Start Page:557
End Page:572
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:HD 100453 has an IR spectral energy distribution (SED) which can be fit with a power law plus a blackbody. Previous analysis of the SED suggests that the system is a young Herbig Ae star with a gas-rich, flared disk. We reexamine the evolutionary state of the HD 100453 system by refining its age (based on a candidate low-mass companion) and by examining limits on the disk extent, mass accretion rate, and gas content of the disk environment. We confirm that HD 100453B is a common proper motion companion to HD 100453A, with a spectral type of M4.0V-M4.5V, and derive an age of 10 ± 2 Myr. We find no evidence of mass accretion onto the star. Chandra ACIS-S imagery shows that the Herbig Ae star has L x/L bol and an X-ray spectrum similar to nonaccreting beta Pic Moving Group early F stars. Moreover, the disk lacks the conspicuous Fe II emission and excess FUV continuum seen in spectra of actively accreting Herbig Ae stars, and from the FUV continuum, we find the accretion rate is < 1.4 × 10-9 M sun yr-1. A sensitive upper limit to the CO J = 3-2 intensity indicates that the gas in the outer disk is likely optically thin. Assuming a [CO]/[H2] abundance of 1 × 10-4 and a depletion factor of 103, we find that the mass of cold molecular gas is less than ~0.33 M J and that the gas-to-dust ratio is no more than ~4:1 in the outer disk. The combination of a high fractional IR excess luminosity, a relatively old age, an absence of accretion signatures, and an absence of detectable circumstellar molecular gas suggests that the HD 100453 system is in an unusual state of evolution between a gas-rich protoplanetary disk and a gas-poor debris disk.
Free Keywords:binaries: visual; planetary systems: protoplanetary disks; stars: individual: HD 100453 51 Eri AT Mic HD 169142 2MASSWJ1207334 393254; stars: low-mass; brown dwarfs; stars: pre-main sequence
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/abs/2009ApJ...697..557C [ID No:1]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.