Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



  history
ID: 448193.0, MPI für Astronomie / Publikationen_mpia
The structure of a low-metallicity giant molecular cloud complex
Authors:Leroy, Adam K.; Bolatto, Alberto; Bot, Caroline; Engelbracht, Charles W.; Gordon, Karl; Israel, Frank P.; Rubio, Mónica; Sandstrom, Karin; Stanimirovic, Snezana
Language:English
Date of Publication (YYYY-MM-DD):2009
Title of Journal:The Astrophysical Journal
Journal Abbrev.:ApJ
Volume:702
Start Page:352
End Page:367
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:To understand the impact of low metallicities on giant molecular cloud (GMC) structure, we compare far-infrared dust emission, CO emission, and dynamics in the star-forming complex N83 in the Wing of the Small Magellanic Cloud (SMC). Dust emission (measured by Spitzer as part of the Spitzer Survey of the SMC and Surveying the Agents of a Galaxy's Evolution in the SMC surveys) probes the total gas column independent of molecular line emission and traces shielding from photodissociating radiation. We calibrate a method to estimate the dust column using only the high-resolution Spitzer data and verify that dust traces the interstellar medium in the H I-dominated region around N83. This allows us to resolve the relative structures of H2, dust, and CO within a GMC complex, one of the first times such a measurement has been made in a low-metallicity galaxy. Our results support the hypothesis that CO is photodissociated while H2 self-shields in the outer parts of low-metallicity GMCs, so that dust/self-shielding is the primary factor determining the distribution of CO emission. Four pieces of evidence support this view. First, the CO-to-H2 conversion factor averaged over the whole cloud is very high 4-11 × 1021 cm--2 (K km s--1)--1, or 20-55 times the Galactic value. Second, the CO-to-H2 conversion factor varies across the complex, with its lowest (most nearly Galactic) values near the CO peaks. Third, bright CO emission is largely confined to regions of relatively high line-of-sight extinction, AV gsim 2 mag, in agreement with photodissociation region models and Galactic observations. Fourth, a simple model in which CO emerges from a smaller sphere nested inside a larger cloud can roughly relate the H2 masses measured from CO kinematics and dust.
Free Keywords:dust; extinction; galaxies: ISM; infrared: galaxies; ISM: clouds; Magellanic Clouds; stars: formation
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/abs/2009ApJ...702..352L [ID No:1]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.