Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



  history
ID: 448261.0, MPI für Astronomie / Publikationen_mpia
Long-wavelength observations of debris discs around sun-like stars
Authors:Roccatagliata, V.; Henning, Th; Wolf, S.; Rodmann, J.; Corder, S.; Carpenter, J. M.; Meyer, M. R.; Dowell, D.
Language:English
Date of Publication (YYYY-MM-DD):2009
Title of Journal:Astronomy and Astrophysics
Journal Abbrev.:A & A
Volume:497
Start Page:409
End Page:421
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:Context: Tracing the evolution of debris discs is essential for our understanding of the architecture of planetary system. Even though the evolution of their inner discs has been recently studied with the Spitzer Space Telescope at mid- to far-infrared wavelengths, the outer discs are best characterised by sensitive millimetre observations. Aims: The goal of our study is to understand the evolution timescale of circumstellar debris discs, and the physical mechanisms responsible for such evolution around solar-type stars. In addition, we make a detailed characterisation of the detected debris discs. Methods: Two deep surveys of circumstellar discs around solar-type stars at different ages were carried out at 350 mum with the CSO and at 1.2 mm with the IRAM 30-m telescope. The dust disc masses were computed from the millimetre emission, where the discs are optically thin. Theoretically, the mass of the disc is expected to decrease with time. To test this hypothesis, we performed the generalised Kendall's tau correlation and three different two-sample tests. A characterisation of the detected debris discs has been obtained by computing the collision and Poynting-Robertson timescales and by modelling the spectral energy distribution. Results: The Kendall's tau correlation yields a probability of 76% that the mass of debris discs and their age are correlated. Similarly, the three two-sample tests give a probability between 70 and 83% that younger and older debris systems belong to different parent populations in terms of dust mass. We detected submillimetre/millimetre emission from six debris discs, enabling a detailed SED modelling. Conclusions: Our results on the correlation and evolution of dust mass as a function of age are conditioned by the sensitivity limit of our survey. Deeper millimetre observations are needed to confirm the evolution of debris material around solar-like stars. In the case of the detected discs, the comparison between collision and Poynting-Robertson timescales supports the hypothesis that these discs are dominated by collisions. All detected debris disc systems show the inner part evacuated from small micron-sized grains. This work is based on observations made with the IRAM (Institut de Radioastonomie Millimétrique) 30-m telescope and the CSO (Caltech Submillimetre Observatory) 10-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Free Keywords:circumstellar matter; planetary systems: formation; stars: late-type; Kuiper Belt
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/abs/2009A%26A...497..409... [ID No:1]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.