Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für biologische Kybernetik     Collection: Biologische Kybernetik     Display Documents



ID: 461664.0, MPI für biologische Kybernetik / Biologische Kybernetik
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques
Authors:Hofmann, M.; Pichler, B.; Schölkopf, B.; Beyer, T.
Date of Publication (YYYY-MM-DD):2009-03
Title of Journal:European Journal of Nuclear Medicine and Molecular Imaging
Volume:36
Issue / Number:Supplement 1
Start Page:93
End Page:104
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:Introduction Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data.
Objective Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine.
Discussion MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
External Publication Status:published
Document Type:Article
Communicated by:Holger Fischer
Affiliations:MPI für biologische Kybernetik/Empirical Inference (Dept. Schölkopf)
Identifiers:LOCALID:5674
URL:http://www.springerlink.com/content/dp277216545105...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.