Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für biologische Kybernetik     Collection: Biologische Kybernetik     Display Documents



ID: 461772.0, MPI für biologische Kybernetik / Biologische Kybernetik
Incorporating Prior Knowledge on Class
Probabilities into Local Similarity Measures for Intermodality Image Registration
Authors:Hofmann, M.; Schölkopf, B.; Bezrukov, I.; Cahill, N.D.
Editors:Wells, W.; Joshi, S.; Pohl, K.
Date of Publication (YYYY-MM-DD):2009-09
Title of Proceedings:Proceedings of the MICCAI 2009 Workshop on Probabilistic Models for Medical Image Analysis (PMMIA 2009)
Start Page:220
End Page:231
Physical Description:12
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:We present a methodology for incorporating prior knowledge
on class probabilities into the registration process. By using knowledge
from the imaging modality, pre-segmentations, and/or probabilistic atlases,
we construct vectors of class probabilities for each image voxel. By
defining new image similarity measures for distribution-valued images,
we show how the class probability images can be nonrigidly registered in
a variational framework. An experiment on nonrigid registration of MR
and CT full-body scans illustrates that the proposed technique outperforms
standard mutual information (MI) and normalized mutual information
(NMI) based registration techniques when measured in terms of
target registration error (TRE) of manually labeled fiducials.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Holger Fischer
Affiliations:MPI für biologische Kybernetik/Empirical Inference (Dept. Schölkopf)
Identifiers:LOCALID:6040
URL:http://people.csail.mit.edu/pohl/pmmia09.html
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.