Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für biologische Kybernetik     Collection: Biologische Kybernetik     Display Documents



ID: 461808.0, MPI für biologische Kybernetik / Biologische Kybernetik
Detecting the Direction of Causal Time Series
Authors:Peters, J.; Janzing, D.; Gretton, A.; Schölkopf, B.
Editors:Danyluk, A.; Bottou, L.; Littman, M. L.
Date of Publication (YYYY-MM-DD):2009-06
Title of Proceedings:Proceedings of the 26th International Conference on Machine Learning (ICML 2009)
Start Page:801
End Page:808
Physical Description:8
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:We propose a method that detects the true
direction of time series, by fitting an autoregressive
moving average model to the data.
Whenever the noise is independent of the previous
samples for one ordering of the observations,
but dependent for the opposite ordering,
we infer the former direction to be the
true one. We prove that our method works
in the population case as long as the noise of
the process is not normally distributed (for
the latter case, the direction is not identificable).
A new and important implication of
our result is that it confirms a fundamental
conjecture in causal reasoning - if after regression
the noise is independent of signal for
one direction and dependent for the other,
then the former represents the true causal
direction - in the case of time series. We
test our approach on two types of data: simulated
data sets conforming to our modeling
assumptions, and real world EEG time series.
Our method makes a decision for a significant
fraction of both data sets, and these
decisions are mostly correct. For real world
data, our approach outperforms alternative
solutions to the problem of time direction recovery.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Holger Fischer
Affiliations:MPI für biologische Kybernetik/Empirical Inference (Dept. Schölkopf)
Identifiers:LOCALID:5902
URL:http://www.cs.mcgill.ca/~icml2009/
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.