Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Meteorologie     Collection: Atmosphere in the Earth System     Display Documents



  history
ID: 488959.0, MPI für Meteorologie / Atmosphere in the Earth System
Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario
Authors:Thomas, M. A.; Suntharalingam, P.; Pozzoli, L.; Rast, S.; Devasthale, A.; Kloster, S.; Feichter, J.; Lenton, T. M.
Language:English
Date of Publication (YYYY-MM-DD):2010
Title of Journal:Atmospheric Chemistry and Physics
Volume:10
Start Page:7425
End Page:7438
Review Status:not specified
Audience:Not Specified
Abstract / Description:The contribution of ocean dimethyl sulfide (DMS) emissions to changes in cloud microphysical properties is quantified seasonally and globally for present day climate conditions using an aerosol-chemistry-climate general circulation model, ECHAM5-HAMMOZ, coupled to a cloud microphysics scheme. We evaluate DMS aerosol-cloud-climate linkages over the southern oceans where anthropogenic influence is minimal. The changes in the number of activated particles, cloud droplet number concentration (CDNC), cloud droplet effective radius, cloud cover and the radiative forcing are examined by analyzing two simulations: a baseline simulation with ocean DMS emissions derived from a prescribed climatology and one in which the ocean DMS emissions are switched off. Our simulations show that the model realistically simulates the seasonality in the number of activated particles and CDNC, peaking during Southern Hemisphere (SH) summer coincident with increased phytoplankton blooms and gradually declining with a minimum in SH winter. In comparison to a simulation with no DMS, the CDNC level over the southern oceans is 128% larger in the baseline simulation averaged over the austral summer months. Our results also show an increased number of smaller sized cloud droplets during this period. We estimate a maximum decrease of up to 15–18% in the droplet radius and a mean increase in cloud cover by around 2.5% over the southern oceans during SH summer in the simulation with ocean DMS compared to when the DMS emissions are switched off. The global annual mean top of the atmosphere DMS aerosol all sky radiative forcing is −2.03 W/m2, whereas, over the southern oceans during SH summer, the mean DMS aerosol radiative forcing reaches −9.32 W/m2.
External Publication Status:published
Document Type:Article
Communicated by:Carola Kauhs
Affiliations:MPI für Meteorologie/Atmosphere in the Earth System
Identifiers:URL:www.atmos-chem-phys.net/10/7425/2010/
DOI:10.5194/acp-10-7425-2010
Full Text:
You have privileges to view the following file(s):
acp-10-7425-2010.pdf  [4,00 Mb]   
 
acp-10-7425-2010-supplement.pdf  [796,00 Kb]   
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.