Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Gravitationsphysik     Collection: Quantum Gravity and Unified Theories     Display Documents



  history
ID: 50977.0, MPI für Gravitationsphysik / Quantum Gravity and Unified Theories
Black Hole Thermodynamics and Riemann Surfaces
Authors:Krasnov, Kirill
Language:English
Date of Publication (YYYY-MM-DD):2003-06-07
Title of Journal:Classical and Quantum Gravity
Volume:20
Issue / Number:11
Start Page:2235
End Page:2250
Review Status:not specified
Audience:Not Specified
Abstract / Description:We use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2+1 dimensions. A general black hole in 2+1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G = 2g + h - 1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g, h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kähler potential for the Weil-Peterson metric on the Schottky space. Bekenstein bound on the black hole entropy leads us to conjecture a new strong bound on this Kähler potential.
External Publication Status:published
Document Type:Article
Communicated by:Hermann Nicolai
Affiliations:MPI für Gravitationsphysik/Quantum Gravity and Unified Theories
Full Text:
You have privileges to view the following file(s):
50977.pdf  [196,00 Kb] [Comment:arXiv]  
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.