Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Meteorologie     Collection: Land in the Earth System     Display Documents



  history
ID: 538067.0, MPI für Meteorologie / Land in the Earth System
Description of the Earth system model of intermediate complexity LOVECLIM version 1.2
Authors:Goosse, H.; Brovkin, V.; Fichefet, T.; Haarsma, R.; Huybrechts, P.; Jongma, J.; Mouchet, A.; Selten, F.; Barriat, P.-Y.; Campin, J.-M.; Deleersnijder, E.; Driesschaert, E.; Goelzer, H.; Janssens, I.; Loutre, M.-F.; Morales Maqueda, M. A.; Opsteegh, T.; Mathieu, P.-P.; Munhoven, G.; Pettersson, E. J.; Renssen, H.; Roche, D. M.; Schaeffer, M.; Tartinville, B.; Timmermann, A.; Weber, S. L.
Language:English
Date of Publication (YYYY-MM-DD):2010
Title of Journal:Geoscientific Model Development
Volume:3
Start Page:603
End Page:633
Review Status:not specified
Audience:Not Specified
Abstract / Description:The main characteristics of the new version 1.2 of the three-dimensional Earth system model of intermediate complexity LOVECLIM are briefly described. LOVECLIM 1.2 includes representations of the atmosphere, the ocean and sea ice, the land surface (including vegetation), the ice sheets, the icebergs and the carbon cycle. The atmospheric component is ECBilt2, a T21, 3-level quasi-geostrophic model. The ocean component is CLIO3, which consists of an ocean general circulation model coupled to a comprehensive thermodynamic-dynamic sea-ice model. Its horizontal resolution is of 3° by 3°, and there are 20 levels in the ocean. ECBilt-CLIO is coupled to VECODE, a vegetation model that simulates the dynamics of two main terrestrial plant functional types, trees and grasses, as well as desert. VECODE also simulates the evolution of the carbon cycle over land while the ocean carbon cycle is represented by LOCH, a comprehensive model that takes into account both the solubility and biological pumps. The ice sheet component AGISM is made up of a three-dimensional thermomechanical model of the ice sheet flow, a visco-elastic bedrock model and a model of the mass balance at the ice-atmosphere and ice-ocean interfaces. For both the Greenland and Antarctic ice sheets, calculations are made on a 10 km by 10 km resolution grid with 31 sigma levels. LOVECLIM1.2 reproduces well the major characteristics of the observed climate both for present-day conditions and for key past periods such as the last millennium, the mid-Holocene and the Last Glacial Maximum. However, despite some improvements compared to earlier versions, some biases are still present in the model. The most serious ones are mainly located at low latitudes with an overestimation of the temperature there, a too symmetric distribution of precipitation between the two hemispheres, and an overestimation of precipitation and vegetation cover in the subtropics. In addition, the atmospheric circulation is too weak. The model also tends to underestimate the surface temperature changes (mainly at low latitudes) and to overestimate the ocean heat uptake observed over the last decades.
External Publication Status:published
Document Type:Article
Communicated by:Kauhs
Affiliations:MPI für Meteorologie/Atmosphere in the Earth System
Identifiers:URL:http://www.geosci-model-dev.net/3/603/2010/gmd-3-6...
DOI:10.5194/gmd-3-603-2010
Full Text:
You have privileges to view the following file(s):
gmd-3-603-2010.pdf  [8,00 Mb]   
 
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.