Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Physik     Collection: MPI für Physik     Display Documents

ID: 543116.0, MPI für Physik / MPI für Physik
A new concept for a cryogenic amplifier stage
Authors:Fedl, V.; Barl, L.; Lutz, G.; Richter, R.; Strüder, L.
Date of Publication (YYYY-MM-DD):2010
Title of Journal:Nuclear Instruments and Methods in Physics Research Section A
Journal Abbrev.:Nucl.Instrum.Meth.A
Issue / Number:624
Start Page:476
End Page:481
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:The observation of astrophysical objects in the mid-infrared requires Blocked Impurity Band (BIB) detectors based on n-doped Silicon. It is desirable to observe faint astronomical objects with such a detector, which can be achieved with a high signal to noise ratio. These detectors operate at a temperature range from 6 to 12 K. We foresee a new detector concept for the readout of the generated signal charge. Our aim is to implement a Depleted P-channel Field Effect Transistor (DEPFET) Active Pixel Sensor (APS) on the BIB detector in order to have a high sensitivity. We successfully operated the DEPFET under cryogenic conditions and investigated the reset mechanism of the collected signal charge.

We identified uncomplete clear with freeze-out of the signal charge into ionized shallow donor states in the heavily doped internal Gate of the DEPFET due to low thermal energy. Therefore, we found a solution to emit these localized signal charges into the conduction band in order to ensure the transport from the internal Gate to the Clear contact. It is possible to apply electric fields higher than 17 kV/cm at the position of the collected signal charge to emit the electrons from the shallow donor states. The electric field enhanced emission is equivalent to the tunneling effect.
Classification / Thesaurus:Semiconductor Detectors
External Publication Status:published
Document Type:Article
Communicated by:N.N.
Affiliations:MPI für Physik
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.