Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: Publikationen MPI-CBG 2010-arch     Display Documents



ID: 546701.0, MPI für molekulare Zellbiologie und Genetik / Publikationen MPI-CBG 2010-arch
Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes.
Authors:Neumann, Beate; Walter, Thomas; Hériché, Jean-Karim; Bulkescher, Jutta; Erfle, Holger; Conrad, Christian; Rogers, Phill; Poser, Ina; Held, Michael; Liebel, Urban; Cetin, Cihan; Sieckmann, Frank; Pau, Gregoire; Kabbe, Rolf; Wünsche, Annelie; Satagopam, Venkata; Schmitz, Michael H A; Chapuis, Catherine; Gerlich, Daniel W; Schneider, Reinhard; Eils, Roland; Huber, Wolfgang; Peters, Jan-Michael; Hyman, Anthony A.; Durbin, Richard; Pepperkok, Rainer; Ellenberg, Jan
Date of Publication (YYYY-MM-DD):2010
Title of Journal:Nature
Volume:464
Issue / Number:7289
Start Page:721
End Page:727
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the approximately 21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.
External Publication Status:published
Document Type:Article
Communicated by:nn
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:4185
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.