Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für biologische Kybernetik     Collection: Biologische Kybernetik     Display Documents



ID: 548497.0, MPI für biologische Kybernetik / Biologische Kybernetik
Bayesian estimation of orientation preference maps
Authors:Macke, J.H.; Gerwinn, S.; Kaschube, M.; White, L.E.; Bethge, M.
Editors:Bengio, Y.; Schuurmans, D.; Lafferty, J.; Williams, C.; Culotta, A.
Date of Publication (YYYY-MM-DD):2010-04
Title of Proceedings:Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009
Start Page:1195
End Page:1203
Physical Description:9
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:Imaging techniques such as optical imaging of intrinsic signals, 2-photon calcium imaging and voltage sensitive dye imaging can be used to measure the functional organization of visual cortex across different spatial and temporal scales. Here, we present Bayesian methods based on Gaussian processes for extracting topographic maps from functional imaging data. In particular, we focus on the estimation of orientation preference maps (OPMs) from intrinsic signal imaging data. We model the underlying map as a bivariate Gaussian process, with a prior covariance function that reflects known properties of OPMs, and a noise covariance adjusted to the data. The posterior mean can be interpreted as an optimally smoothed estimate of the map, and can be used for model based interpolations of the map from sparse measurements. By sampling from the posterior distribution, we can get error bars on statistical properties such as preferred orientations, pinwheel locations or pinwhee
l co
unts
. Fi
nall
y, t
he use of an explicit probabilistic model facilitates interpretation of parameters and quantitative model comparisons. We demonstrate our model both on simulated data and on intrinsic signaling data from ferret visual cortex.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Holger Fischer
Affiliations:MPI für biologische Kybernetik/NWG Bethge
Identifiers:LOCALID:6121
URL:http://nips.cc/Conferences/2009/
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.