Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für biologische Kybernetik     Collection: Biologische Kybernetik     Display Documents



ID: 548514.0, MPI für biologische Kybernetik / Biologische Kybernetik
Telling cause from effect based on high-dimensional observations
Authors:Janzing, D.; Hoyer, P.; Schölkopf, B.
Editors:Fürnkranz, J.; Joachims, T.
Date of Publication (YYYY-MM-DD):2010-06
Title of Proceedings:Proceedings of the 27th International Conference on Machine Learning (ICML 2010)
Start Page:479
End Page:486
Physical Description:8
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:We describe a method for inferring linear causal relations
among multi-dimensional variables. The idea is to use an asymmetry between the distributions of cause and effect that occurs
if the covariance matrix of the cause and the structure matrix mapping the cause
to the effect are independently chosen.
The method applies to both stochastic and deterministic causal relations, provided that the dimensionality is sufficiently high (in some experiments, 5 was enough). It is applicable to Gaussian as well as non-Gaussian data.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Holger Fischer
Affiliations:MPI für biologische Kybernetik/Empirical Inference (Dept. Schölkopf)
Identifiers:LOCALID:6501
URL:http://www.icml2010.org/
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.