Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 559214.0, MPI für Astronomie / Publikationen_mpia
Herschel observations of water vapour in Markarian 231
Authors:González-Alfonso, E.; Fischer, J.; Isaak, K.; Rykala, A.; Savini, G.; Spaans, M.; van der Werf, P.; Meijerink, R.; Israel, F. P.; Loenen, A. F.; Vlahakis, C.; Smith, H. A.; Charmandaris, V.; Aalto, S.; Henkel, C.; Weiß, A.; Walter, F.; Greve, T. R.; Martín-Pintado, J.; Naylor, D. A.; Spinoglio, L.; Veilleux, S.; Harris, A. I.; Armus, L.; Lord, S.; Mazzarella, J.; Xilouris, E. M.; Sanders, D. B.; Dasyra, K. M.; Wiedner, M. C.; Kramer, C.; Papadopoulos, P. P.; Stacey, G. J.; Evans, A. S.; Gao, Y.
Date of Publication (YYYY-MM-DD):2010
Journal Abbrev.:Astronomy and Astrophysics
Volume:518
Start Page:id.L43
Audience:Not Specified
Abstract / Description:The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4σ level, within the Herschel/SPIRE wavelength range (190 < λ (μm) < 640), whereas PACS observations show one H2O line at 78 μm in absorption, as found for other H2O lines previously detected by ISO. The absorption/emission dichotomy is caused by the pumping of the rotational levels by far-infrared radiation emitted by dust, and subsequent relaxation through lines at longer wavelengths, which allows us to estimate both the column density of H2O and the general characteristics of the underlying far-infrared continuum source. Radiative transfer models including excitation through both absorption of far-infrared radiation emitted by dust and collisions are used to calculate the equilibrium level populations of H2O and the corresponding line fluxes. The highest-lying H2O lines detected in emission, with levels at 300-640 K above the ground state, indicate that the source of far-infrared radiation responsible for the pumping is compact (radius = 110-180 pc) and warm (Tdust = 85-95 K), accounting for at least 45% of the bolometric luminosity. The high column density, N(H2O) ~ 5×1017 cm-2, found in this nuclear component, is most probably the consequence of shocks/cosmic rays, an XDR chemistry, and/or an “undepleted chemistry” where grain mantles are evaporated. A more extended region, presumably the inner region of the 1-kpc disk observed in other molecular species, could contribute to the flux observed in low-lying H2O lines through dense hot cores, and/or shocks. The H2O 78 μm line observed with PACS shows hints of a blue-shifted wing seen in absorption, possibly indicating the occurrence of H2O in the prominent outflow detected in OH (Fischer et al. 2010, A&A, 518, L41). Additional PACS/HIFI observations of H2O lines are required to constrain the kinematics of the nuclear component, as well as the distribution of H2O relative to the warm dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Free Keywords:ISM: molecules; galaxies: ISM; galaxies: individual: Mrk 231; line: formation; infrared: ISM; submillimeter: galaxies
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/abs/2010A%26A...518L..43...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.