Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



  history
ID: 559260.0, MPI für Astronomie / Publikationen_mpia
Investigating the cosmic-ray ionization rate near the supernova remnant IC 443 through H⁺³ observations
Authors:Indriolo, Nick; Blake, Geoffrey A.; Goto, Miwa; Usuda, Tomonori; Oka, Takeshi; Geballe, T. R.; Fields, Brian D.; McCall, Benjamin J.
Language:English
Date of Publication (YYYY-MM-DD):2010
Title of Journal:The Astrophysical Journal
Journal Abbrev.:ApJ
Volume:724
Issue / Number:2
Start Page:1357
End Page:1365
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:Observational and theoretical evidence suggests that high-energy Galactic cosmic rays are primarily accelerated by supernova remnants. If also true for low-energy cosmic rays, the ionization rate near a supernova remnant should be higher than in the general Galactic interstellar medium (ISM). We have searched for H+ 3 absorption features in six sight lines which pass through molecular material near IC 443—a well-studied case of a supernova remnant interacting with its surrounding molecular material—for the purpose of inferring the cosmic-ray ionization rate in the region. In two of the sight lines (toward ALS 8828 and HD 254577) we find large H+ 3 column densities, N(H+ 3) ≈ 3 × 1014 cm-2, and deduce ionization rates of ζ2 ≈ 2 × 10-15 s-1, about five times larger than inferred toward average diffuse molecular cloud sight lines. However, the 3σ upper limits found for the other four sight lines are consistent with typical Galactic values. This wide range of ionization rates is likely the result of particle acceleration and propagation effects, which predict that the cosmic-ray spectrum and thus ionization rate should vary in and around the remnant. While we cannot determine if the H+ 3 absorption arises in post-shock (interior) or pre-shock (exterior) gas, the large inferred ionization rates suggest that IC 443 is in fact accelerating a large population of low-energy cosmic rays. Still, it is unclear whether this population can propagate far enough into the ISM to account for the ionization rate inferred in diffuse Galactic sight lines. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Free Keywords:astrochemistry; cosmic rays; ISM: supernova remnants
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/abs/2010ApJ...724.1357I [ID No:1]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.