Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 559387.0, MPI für Astronomie / Publikationen_mpia
Detailed decomposition of galaxy images. II. Beyond axisymmetric models
Authors:Peng, C. Y.; Ho, L. C.; Impey, C. D.; Rix, H.-W.
Date of Publication (YYYY-MM-DD):2010
Journal Abbrev.:The Astronomical Journal
Volume:139
Issue / Number:6
Start Page:2097
End Page:2129
Audience:Not Specified
Abstract / Description:We present a two-dimensional (2-D) fitting algorithm (GALFIT, Version 3) with new capabilities to study the structural components of galaxies and other astronomical objects in digital images. Our technique improves on previous 2-D fitting algorithms by allowing for irregular, curved, logarithmic and power-law spirals, ring and truncated shapes in otherwise traditional parametric functions like the Sersic, Moffat, King, Ferrer, etc., profiles. One can mix and match these new shape features freely, with or without constraints, apply them to an arbitrary number of model components and of numerous profile types, so as to produce realistic-looking galaxy model images. Yet, despite the potential for extreme complexity, the meaning of the key parameters like the Sersic index, effective radius or luminosity remain intuitive and essentially unchanged. The new features have an interesting potential for use to quantify the degree of asymmetry of galaxies, to quantify low surface brightness tidal features beneath and beyond luminous galaxies, to allow more realistic decompositions of galaxy subcomponents in the presence of strong rings and spiral arms, and to enable ways to gauge the uncertainties when decomposing galaxy subcomponents. We illustrate these new features by way of several case studies that display various levels of complexity.
Free Keywords:Astrophysics - Cosmology and Extragalactic Astrophysics
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://adsabs.harvard.edu/abs/2009arXiv0912.0731P
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.