|
|
|
ID:
559442.0,
MPI für Astronomie / Publikationen_mpia |
Obscuring and feeding supermassive black holes with evolving nuclear star clusters |
Authors: | Schartmann, M.; Burkert, A.; Krause, M.; Camenzind, M.; Meisenheimer, K.; Davies, R. I. | Language: | English | Publisher: | Cambridge Univ. Press | Place of Publication: | Bellingham, Wash. | Date of Publication (YYYY-MM-DD): | 2010 | Title of Proceedings: | Co-Evolution of Central Black Holes and Galaxies | Start Page: | 307 | End Page: | 312 | Title of Series: | SPIE | Volume (in Series): | 267 | Name of Conference/Meeting: | Co-Evolution of Central Black Holes and Galaxies | Review Status: | not specified | Audience: | Experts Only | Abstract / Description: | Recently, high-resolution observations made with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centers of a sample of Seyfert galaxies. With the help of high-resolution hydrodynamical simulations with the pluto code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsecs), whereas a turbulent and very dense disk builds up on the parsec scale. Here we concentrate on the long-term evolution of the nuclear disk in NGC 1068 with the help of an effective viscous disk model, using the mass input from the large-scale simulations and accounting for star formation in the disk. This two-stage modeling enables us to connect the tens-of-parsecs scale region (observable with SINFONI) with the parsec-scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disk sizes of the order 0.8 to 0.9 pc, gas masses of order 106 Mï, and mass transfer rates through the inner boundary of order 0.025 Mï yrââ¬â1, in good agreement with values derived from observations. | Free Keywords: | galaxies: Seyfert; galaxies: nuclei; galaxies: ISM; galaxies: individual (NGC 1068); hydrodynamics; methods: numerical; ISM: evolution; ISM: kinematics and dynamics; black hole physics; stars: mass loss | Comment of the Author/Creator: | Date: 2010, May 1, 2010 | External Publication Status: | published | Document Type: | Conference-Paper |
Communicated by: | N. N. | Affiliations: | MPI für Astronomie
| Identifiers: | URL:http://adsabs.harvard.edu/abs/2010IAUS..267..307S [ID No:1] | |
|
|
The scope and number of records on eDoc is subject
to the collection policies defined by each institute
- see "info" button in the collection browse view.
|
|