Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung)     Collection: Abt. Schölkopf (Empirical Inference)     Display Documents



  history
ID: 596088.0, MPI für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) / Abt. Schölkopf (Empirical Inference)
Optimization for Machine Learning
Editors:Sra, S.; Nowozin, S.; Wright, S. J.
Language:English
Place of Publication:Cambridge, MA, USA
Publisher:MIT Press
Date of Publication (YYYY-MM-DD):2011-12-01
Physical Description
(e.g. Total Number of Pages):
494
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.
Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
External Publication Status:published
Document Type:Book
Communicated by:Heide Klooz
Affiliations:MPI für Intelligente Systeme/Abt. Schölkopf
Identifiers:URL:http://www.kyb.tuebingen.mpg.de/
LOCALID:6822
ISBN:978-0-262-01646-9
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.