Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung)     Collection: Abt. Schölkopf (Empirical Inference)     Display Documents



  history
ID: 596824.0, MPI für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) / Abt. Schölkopf (Empirical Inference)
Testing whether linear equations are causal: A free probability theory approach
Authors:Zscheischler, J.; Janzing, D.; Zhang, K.
Publisher:AUAI Press
Place of Publication:Corvallis, OR, USA
Date of Publication (YYYY-MM-DD):2011-07-01
Title of Proceedings:27th Conference on Uncertainty in Artificial Intelligence (UAI 2011)
Start Page:839
End Page:847
Physical Description:8
Place of Conference/Meeting:Barcelona, Spain
Review Status:not specified
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:We propose a method that infers whether linear relations between two high-dimensional variables X and Y are due to a causal influence from X to Y or from Y to X. The earlier proposed so-called Trace Method is extended to the regime where the dimension of the observed variables exceeds the sample size. Based on previous work, we postulate
conditions that characterize a causal relation between X and Y . Moreover, we describe a statistical test and argue that both causal directions are typically rejected if there is a common cause. A full theoretical analysis is
presented for the deterministic case but our approach seems to be valid for the noisy case, too, for which we additionally present an approach based on a sparsity constraint. The discussed method yields promising results for both simulated and real world data.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Heide Klooz
Affiliations:MPI für Intelligente Systeme/Abt. Schölkopf
Identifiers:URL:http://www.kyb.tuebingen.mpg.de/fileadmin/user_upl...
LOCALID:ZscheischlerJZ2011
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.